Peter Scholze and Jared Weinstein
- Published in print:
- 2020
- Published Online:
- January 2021
- ISBN:
- 9780691202082
- eISBN:
- 9780691202150
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202082.003.0008
- Subject:
- Mathematics, Geometry / Topology
This chapter investigates the notion of a diamond. The idea is that there should be a functor which “forgets the structure morphism to Zp.” The desired quotient in the example provided in the chapter ...
More
This chapter investigates the notion of a diamond. The idea is that there should be a functor which “forgets the structure morphism to Zp.” The desired quotient in the example provided in the chapter exists in a category of sheaves on the site of perfectoid spaces with pro-étale covers. The chapter then defines pro-étale morphisms between perfectoid spaces. A morphism of perfectoid spaces is pro-étale if it is locally (on the source and target) affinoid pro-étale. The intuitive definition of diamonds involved the tilting functor in case of perfectoid spaces of characteristic 0. For this reason, diamonds are defined as certain pro-étale sheaves on the category of perfectoid spaces of characteristic p.Less
This chapter investigates the notion of a diamond. The idea is that there should be a functor which “forgets the structure morphism to Zp.” The desired quotient in the example provided in the chapter exists in a category of sheaves on the site of perfectoid spaces with pro-étale covers. The chapter then defines pro-étale morphisms between perfectoid spaces. A morphism of perfectoid spaces is pro-étale if it is locally (on the source and target) affinoid pro-étale. The intuitive definition of diamonds involved the tilting functor in case of perfectoid spaces of characteristic 0. For this reason, diamonds are defined as certain pro-étale sheaves on the category of perfectoid spaces of characteristic p.