Ken Binmore
- Published in print:
- 2007
- Published Online:
- May 2007
- ISBN:
- 9780195300574
- eISBN:
- 9780199783748
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780195300574.003.0007
- Subject:
- Economics and Finance, Microeconomics
This chapter describes the theory of two-person, zero-sum games invented by John Von Neumann in 1928. It begins with an application to the computation of economic shadow prices. It shows that a ...
More
This chapter describes the theory of two-person, zero-sum games invented by John Von Neumann in 1928. It begins with an application to the computation of economic shadow prices. It shows that a two-person game is strictly competitive if, and only if, it has a zero-sum representation. Such a game can be represented using only the first player's payoff matrix. The minimax and maximin values of the matrix are defined and linked to the concept of a saddle point. The ideas are then related to a player's security level in a game. An inductive proof of Von Neumann's minimax theorem is offered. The connexion between the minimax theorem and the duality theorem of linear programming is explained. The method of solving certain two-person, zero-sum games geometrically with the help of the theorem of the separating hyperplane is introduced. The Hide-and-Seek Game is used as a non-trivial example.Less
This chapter describes the theory of two-person, zero-sum games invented by John Von Neumann in 1928. It begins with an application to the computation of economic shadow prices. It shows that a two-person game is strictly competitive if, and only if, it has a zero-sum representation. Such a game can be represented using only the first player's payoff matrix. The minimax and maximin values of the matrix are defined and linked to the concept of a saddle point. The ideas are then related to a player's security level in a game. An inductive proof of Von Neumann's minimax theorem is offered. The connexion between the minimax theorem and the duality theorem of linear programming is explained. The method of solving certain two-person, zero-sum games geometrically with the help of the theorem of the separating hyperplane is introduced. The Hide-and-Seek Game is used as a non-trivial example.