Gary A. Glatzmaier
- Published in print:
- 2013
- Published Online:
- October 2017
- ISBN:
- 9780691141725
- eISBN:
- 9781400848904
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691141725.003.0007
- Subject:
- Physics, Particle Physics / Astrophysics / Cosmology
This chapter discusses double-diffusive convection, with a particular focus on the initial instability and eventual nonlinear evolution. It first considers the “salt-fingering” instability and then ...
More
This chapter discusses double-diffusive convection, with a particular focus on the initial instability and eventual nonlinear evolution. It first considers the “salt-fingering” instability and then the “semiconvection” instability before discussing the possibility that the onsets of these instabilities at marginal stability have an amplitude that oscillates in time. The goal is to find the conditions that would result in a zero growth rate of the oscillation amplitude in order to determine the marginal stability constraint on the Rayleigh numbers for the onset of an oscillating instability. The chapter also shows how, after evolving beyond the onset of the instability, thermal diffusion between the moving parcel and the surroundings can alter the initial linear vertical profile of the horizontal-mean temperature into a “staircase” profile. This evolution of the temperature profile is investigated via nonlinear simulations.Less
This chapter discusses double-diffusive convection, with a particular focus on the initial instability and eventual nonlinear evolution. It first considers the “salt-fingering” instability and then the “semiconvection” instability before discussing the possibility that the onsets of these instabilities at marginal stability have an amplitude that oscillates in time. The goal is to find the conditions that would result in a zero growth rate of the oscillation amplitude in order to determine the marginal stability constraint on the Rayleigh numbers for the onset of an oscillating instability. The chapter also shows how, after evolving beyond the onset of the instability, thermal diffusion between the moving parcel and the surroundings can alter the initial linear vertical profile of the horizontal-mean temperature into a “staircase” profile. This evolution of the temperature profile is investigated via nonlinear simulations.