Richard Frankham, Jonathan D. Ballou, Katherine Ralls, Mark D. B. Eldridge, Michele R. Dudash, Charles B. Fenster, Robert C. Lacy, and Paul Sunnucks
- Published in print:
- 2017
- Published Online:
- September 2017
- ISBN:
- 9780198783398
- eISBN:
- 9780191826313
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780198783398.003.0009
- Subject:
- Biology, Biodiversity / Conservation Biology
The first step in conservation management is to delineate groups for separate versus combined management. However, there are many problems with species delineation, including diverse species ...
More
The first step in conservation management is to delineate groups for separate versus combined management. However, there are many problems with species delineation, including diverse species definitions, lack of standardized protocols, and poor repeatability of delineations. Definitions that are too broad will lead to outbreeding depression if populations are crossed, while those that split excessively may preclude genetic rescue of small inbred populations with low genetic diversity. To minimize these problems, we recommend the use of species concepts based upon reproductive isolation (such as the biological species concept) and advise against the use of phylogenetic and general lineage species concepts. We provide guidelines as to when taxonomy requires revision and outline protocols for robust species delineations.Less
The first step in conservation management is to delineate groups for separate versus combined management. However, there are many problems with species delineation, including diverse species definitions, lack of standardized protocols, and poor repeatability of delineations. Definitions that are too broad will lead to outbreeding depression if populations are crossed, while those that split excessively may preclude genetic rescue of small inbred populations with low genetic diversity. To minimize these problems, we recommend the use of species concepts based upon reproductive isolation (such as the biological species concept) and advise against the use of phylogenetic and general lineage species concepts. We provide guidelines as to when taxonomy requires revision and outline protocols for robust species delineations.
Richard Frankham, Jonathan D. Ballou, Katherine Ralls, Mark D. B. Eldridge, Michele R. Dudash, Charles B. Fenster, Robert C. Lacy, and Paul Sunnucks
- Published in print:
- 2019
- Published Online:
- November 2019
- ISBN:
- 9780198783411
- eISBN:
- 9780191826337
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780198783411.003.0006
- Subject:
- Biology, Biodiversity / Conservation Biology, Evolutionary Biology / Genetics
The first step in conservation management is to delineate groups for separate versus combined management. However, there are many problems with species delineation, including diverse species ...
More
The first step in conservation management is to delineate groups for separate versus combined management. However, there are many problems with species delineation, including diverse species definitions, lack of standardized protocols, and poor repeatability of delineations. Definitions that are too broad will lead to outbreeding depression if populations are crossed, while those that split excessively may preclude genetic rescue of small inbred populations with low genetic diversity. To minimize these problems, we recommend the use of species concepts based upon reproductive isolation (such as the Biological Species Concept) and advise against the use of Phylogenetic and General Lineage Species Concepts. We provide guidelines as to when taxonomy requires revision and outline protocols for robust species delineations.Less
The first step in conservation management is to delineate groups for separate versus combined management. However, there are many problems with species delineation, including diverse species definitions, lack of standardized protocols, and poor repeatability of delineations. Definitions that are too broad will lead to outbreeding depression if populations are crossed, while those that split excessively may preclude genetic rescue of small inbred populations with low genetic diversity. To minimize these problems, we recommend the use of species concepts based upon reproductive isolation (such as the Biological Species Concept) and advise against the use of Phylogenetic and General Lineage Species Concepts. We provide guidelines as to when taxonomy requires revision and outline protocols for robust species delineations.
George McGhee
- Published in print:
- 2011
- Published Online:
- August 2013
- ISBN:
- 9780262016421
- eISBN:
- 9780262298872
- Item type:
- book
- Publisher:
- The MIT Press
- DOI:
- 10.7551/mitpress/9780262016421.001.0001
- Subject:
- Biology, Evolutionary Biology / Genetics
Charles Darwin famously concluded On the Origin of Species with a vision of “endless forms most beautiful” continually evolving. More than 150 years later, many evolutionary biologists see not ...
More
Charles Darwin famously concluded On the Origin of Species with a vision of “endless forms most beautiful” continually evolving. More than 150 years later, many evolutionary biologists see not endless forms but the same, or very similar, forms evolving repeatedly in many independent species lineages. A porpoise’s fishlike fins, for example, are not inherited from fish ancestors but are independently derived convergent traits. This book describes the ubiquity of the phenomenon of convergent evolution and connects it directly to the concept of evolutionary constraint—the idea that the number of evolutionary pathways available to life are not endless, but quite limited. Convergent evolution occurs on all levels, from tiny organic molecules to entire ecosystems of species. The author demonstrates its ubiquity in animals, both herbivore and carnivore; in plants; in ecosystems; in molecules, including DNA, proteins, and enzymes; and even in minds, describing problem-solving behavior and group behavior as the products of convergence. For each species example, he provides an abbreviated list of the major nodes in its phylogenetic classification, allowing the reader to see the evolutionary relationship of a group of species that have independently evolved a similar trait by convergent evolution. The author analyzes the role of functional and developmental constraints in producing convergent evolution, and considers the scientific and philosophical implications of convergent evolution for the predictability of the evolutionary process.Less
Charles Darwin famously concluded On the Origin of Species with a vision of “endless forms most beautiful” continually evolving. More than 150 years later, many evolutionary biologists see not endless forms but the same, or very similar, forms evolving repeatedly in many independent species lineages. A porpoise’s fishlike fins, for example, are not inherited from fish ancestors but are independently derived convergent traits. This book describes the ubiquity of the phenomenon of convergent evolution and connects it directly to the concept of evolutionary constraint—the idea that the number of evolutionary pathways available to life are not endless, but quite limited. Convergent evolution occurs on all levels, from tiny organic molecules to entire ecosystems of species. The author demonstrates its ubiquity in animals, both herbivore and carnivore; in plants; in ecosystems; in molecules, including DNA, proteins, and enzymes; and even in minds, describing problem-solving behavior and group behavior as the products of convergence. For each species example, he provides an abbreviated list of the major nodes in its phylogenetic classification, allowing the reader to see the evolutionary relationship of a group of species that have independently evolved a similar trait by convergent evolution. The author analyzes the role of functional and developmental constraints in producing convergent evolution, and considers the scientific and philosophical implications of convergent evolution for the predictability of the evolutionary process.