Peter Scholze and Jared Weinstein
- Published in print:
- 2020
- Published Online:
- January 2021
- ISBN:
- 9780691202082
- eISBN:
- 9780691202150
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202082.003.0021
- Subject:
- Mathematics, Geometry / Topology
This chapter reviews affine flag varieties. It generalizes some of the previous results to the case where G over Zp is a parahoric group scheme. In fact, slightly more generally, it allows the case ...
More
This chapter reviews affine flag varieties. It generalizes some of the previous results to the case where G over Zp is a parahoric group scheme. In fact, slightly more generally, it allows the case that the special fiber is not connected, with connected component of the identity G? being a parahoric group scheme. This case comes up naturally in the classical definition of Rapoport-Zink spaces. The chapter first discusses the Witt vector affine flag variety over Fp. This is an increasing union of perfections of quasiprojective varieties along closed immersions. In the case that G° is parahoric, one gets ind-properness.Less
This chapter reviews affine flag varieties. It generalizes some of the previous results to the case where G over Zp is a parahoric group scheme. In fact, slightly more generally, it allows the case that the special fiber is not connected, with connected component of the identity G? being a parahoric group scheme. This case comes up naturally in the classical definition of Rapoport-Zink spaces. The chapter first discusses the Witt vector affine flag variety over Fp. This is an increasing union of perfections of quasiprojective varieties along closed immersions. In the case that G° is parahoric, one gets ind-properness.