Joshua S. Bloom
- Published in print:
- 2011
- Published Online:
- October 2017
- ISBN:
- 9780691145570
- eISBN:
- 9781400837007
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691145570.003.0005
- Subject:
- Physics, Particle Physics / Astrophysics / Cosmology
This chapter discusses the object or objects responsible for gramma-ray bursts (GRBs). Until now, there are few absolute certainties with regard to the progenitors of GRBs. One clear standout is the ...
More
This chapter discusses the object or objects responsible for gramma-ray bursts (GRBs). Until now, there are few absolute certainties with regard to the progenitors of GRBs. One clear standout is the progenitors of soft gamma-ray repeaters (SGRs) which are very obviously neutron stars. There are a number of corroborating lines of evidence for this progenitor association: (1) some well-localized SGRs are associated with supernova remnants, suggesting they are byproducts of recent supernovae; (2) there is quiescent X-ray emission from the sites of SGRs, similar to a class of neutron stars called “anomalous X-ray pulsars”; (3) Galactic SGRs tend to be found in the Galactic plane, where most young neutron stars reside; and (4) the ringdown emission after SGR pulses is periodic, with periods comparable to that of slowly rotating neutron stars (few seconds).Less
This chapter discusses the object or objects responsible for gramma-ray bursts (GRBs). Until now, there are few absolute certainties with regard to the progenitors of GRBs. One clear standout is the progenitors of soft gamma-ray repeaters (SGRs) which are very obviously neutron stars. There are a number of corroborating lines of evidence for this progenitor association: (1) some well-localized SGRs are associated with supernova remnants, suggesting they are byproducts of recent supernovae; (2) there is quiescent X-ray emission from the sites of SGRs, similar to a class of neutron stars called “anomalous X-ray pulsars”; (3) Galactic SGRs tend to be found in the Galactic plane, where most young neutron stars reside; and (4) the ringdown emission after SGR pulses is periodic, with periods comparable to that of slowly rotating neutron stars (few seconds).