*Paula Tretkoff*

- Published in print:
- 2016
- Published Online:
- October 2017
- ISBN:
- 9780691144771
- eISBN:
- 9781400881253
- Item type:
- chapter

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691144771.003.0001
- Subject:
- Mathematics, Geometry / Topology

This chapter explains that the book deals with quotients of the complex 2-ball yielding finite coverings of the projective plane branched along certain line arrangements. It gives a complete list of ...
More

This chapter explains that the book deals with quotients of the complex 2-ball yielding finite coverings of the projective plane branched along certain line arrangements. It gives a complete list of the known weighted line arrangements that can produce such ball quotients, and then provides a justification for the existence of the quotients. The Miyaoka-Yau inequality for surfaces of general type, and its analogue for surfaces with an orbifold structure, plays a central role. The book also examines the explicit computation of the proportionality deviation of a complex surface for finite covers of the complex projective plane ramified along certain line arrangements. Candidates for ball quotients among these finite covers arise by choosing weights on the line arrangements such that the proportionality deviation vanishes.Less

This chapter explains that the book deals with quotients of the complex 2-ball yielding finite coverings of the projective plane branched along certain line arrangements. It gives a complete list of the known weighted line arrangements that can produce such ball quotients, and then provides a justification for the existence of the quotients. The Miyaoka-Yau inequality for surfaces of general type, and its analogue for surfaces with an orbifold structure, plays a central role. The book also examines the explicit computation of the proportionality deviation of a complex surface for finite covers of the complex projective plane ramified along certain line arrangements. Candidates for ball quotients among these finite covers arise by choosing weights on the line arrangements such that the proportionality deviation vanishes.

*Paula Tretkoff*

- Published in print:
- 2016
- Published Online:
- October 2017
- ISBN:
- 9780691144771
- eISBN:
- 9781400881253
- Item type:
- chapter

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691144771.003.0004
- Subject:
- Mathematics, Geometry / Topology

This chapter deals with complex surfaces and their finite coverings branched along divisors, that is, subvarieties of codimension 1. In particular, it considers coverings branched over transversally ...
More

This chapter deals with complex surfaces and their finite coverings branched along divisors, that is, subvarieties of codimension 1. In particular, it considers coverings branched over transversally intersecting divisors. Applying this to linear arrangements in the complex projective plane, the chapter first blows up the projective plane at non-transverse intersection points, that is, at those points of the arrangement where more than two lines intersect. These points are called singular points of the arrangement. This gives rise to a complex surface and transversely intersecting divisors that contain the proper transforms of the original lines. The chapter also introduces the divisor class group, their intersection numbers, and the canonical divisor class. Finally, it describes the Chern numbers of a complex surface in order to define the proportionality deviation of a complex surface and to study its behavior with respect to finite covers.Less

This chapter deals with complex surfaces and their finite coverings branched along divisors, that is, subvarieties of codimension 1. In particular, it considers coverings branched over transversally intersecting divisors. Applying this to linear arrangements in the complex projective plane, the chapter first blows up the projective plane at non-transverse intersection points, that is, at those points of the arrangement where more than two lines intersect. These points are called singular points of the arrangement. This gives rise to a complex surface and transversely intersecting divisors that contain the proper transforms of the original lines. The chapter also introduces the divisor class group, their intersection numbers, and the canonical divisor class. Finally, it describes the Chern numbers of a complex surface in order to define the proportionality deviation of a complex surface and to study its behavior with respect to finite covers.

*Paula Tretkoff*

- Published in print:
- 2016
- Published Online:
- October 2017
- ISBN:
- 9780691144771
- eISBN:
- 9781400881253
- Item type:
- chapter

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691144771.003.0006
- Subject:
- Mathematics, Geometry / Topology

This chapter discusses the free 2-ball quotients arising as finite covers of the projective plane branched along line arrangements. It first considers a surface X obtained by blowing up the singular ...
More

This chapter discusses the free 2-ball quotients arising as finite covers of the projective plane branched along line arrangements. It first considers a surface X obtained by blowing up the singular intersection points of a linear arrangement in the complex projective plane, as well as a smooth compact complex surface Y that is a finite covering of X. If Y is of general type with vanishing proportionality deviation, then it is a free 2-ball quotient. The chapter then looks at line arrangements that have equal ramification indices along each of the proper transforms of the original lines, along with cases of blowing down rational curves and removing elliptic curves. It also enumerates all possibilities for the assigned weights of the arrangements, under the assumption that divisors of negative or infinite weight on the blown-up line arrangements do not intersect.Less

This chapter discusses the free 2-ball quotients arising as finite covers of the projective plane branched along line arrangements. It first considers a surface *X* obtained by blowing up the singular intersection points of a linear arrangement in the complex projective plane, as well as a smooth compact complex surface *Y* that is a finite covering of *X*. If *Y* is of general type with vanishing proportionality deviation, then it is a free 2-ball quotient. The chapter then looks at line arrangements that have equal ramification indices along each of the proper transforms of the original lines, along with cases of blowing down rational curves and removing elliptic curves. It also enumerates all possibilities for the assigned weights of the arrangements, under the assumption that divisors of negative or infinite weight on the blown-up line arrangements do not intersect.