Peter Scholze and Jared Weinstein
- Published in print:
- 2020
- Published Online:
- January 2021
- ISBN:
- 9780691202082
- eISBN:
- 9780691202150
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202082.003.0018
- Subject:
- Mathematics, Geometry / Topology
This chapter explores v-sheaves associated with perfect and formal schemes. The more general formalism of v-sheaves makes it possible to consider not only analytic adic spaces as diamonds, but also ...
More
This chapter explores v-sheaves associated with perfect and formal schemes. The more general formalism of v-sheaves makes it possible to consider not only analytic adic spaces as diamonds, but also certain non-analytic objects as v-sheaves. The chapter first analyzes the behavior on topological spaces. Let X be any pre-adic space over Zp. This is not a diamond, but the chapter shows that it is a v-sheaf. It assesses some properties of this construction. The chapter then looks at applications to local models and integral models of Rapoport-Zink spaces. By passage to the maximal unramified extension and Galois descent, one can assume that k is algebraically closed.Less
This chapter explores v-sheaves associated with perfect and formal schemes. The more general formalism of v-sheaves makes it possible to consider not only analytic adic spaces as diamonds, but also certain non-analytic objects as v-sheaves. The chapter first analyzes the behavior on topological spaces. Let X be any pre-adic space over Zp. This is not a diamond, but the chapter shows that it is a v-sheaf. It assesses some properties of this construction. The chapter then looks at applications to local models and integral models of Rapoport-Zink spaces. By passage to the maximal unramified extension and Galois descent, one can assume that k is algebraically closed.