Andrew T. Boothroyd
- Published in print:
- 2020
- Published Online:
- October 2020
- ISBN:
- 9780198862314
- eISBN:
- 9780191895081
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780198862314.003.0002
- Subject:
- Physics, Atomic, Laser, and Optical Physics, Condensed Matter Physics / Materials
The basic principles of crystallography are reviewed, including the lattice, basis and reciprocal lattice. The Bragg diffraction law and Laue equation, which describe coherent scattering from a ...
More
The basic principles of crystallography are reviewed, including the lattice, basis and reciprocal lattice. The Bragg diffraction law and Laue equation, which describe coherent scattering from a crystalline material, are derived, and the structure factor and differential cross-section are obtained in the static approximation. It is explained how the presence of defects, short-range order, and reduced dimensionality causes diffuse scattering. For non-crystalline materials, such as liquids and glasses, the pair distribution function and density-density correlation function are introduced, and their relation to the static structure factor established. For molecular fluids, the form factor is defined and calculated for a diatomic molecule, and the separation of intra- and inter-molecular scattering is discussed. The principles of small-angle neutron scattering are described.Less
The basic principles of crystallography are reviewed, including the lattice, basis and reciprocal lattice. The Bragg diffraction law and Laue equation, which describe coherent scattering from a crystalline material, are derived, and the structure factor and differential cross-section are obtained in the static approximation. It is explained how the presence of defects, short-range order, and reduced dimensionality causes diffuse scattering. For non-crystalline materials, such as liquids and glasses, the pair distribution function and density-density correlation function are introduced, and their relation to the static structure factor established. For molecular fluids, the form factor is defined and calculated for a diatomic molecule, and the separation of intra- and inter-molecular scattering is discussed. The principles of small-angle neutron scattering are described.