Charles D. Bailyn
- Published in print:
- 2014
- Published Online:
- October 2017
- ISBN:
- 9780691148823
- eISBN:
- 9781400850563
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691148823.003.0008
- Subject:
- Physics, Particle Physics / Astrophysics / Cosmology
This chapter examines the spin of a black hole. The spin is usually described as a nondimensional parameter, which can range from zero (a nonspinning black hole) to one (a situation described as ...
More
This chapter examines the spin of a black hole. The spin is usually described as a nondimensional parameter, which can range from zero (a nonspinning black hole) to one (a situation described as “maximally spinning”). The differences in space-time between a nonspinning Schwarzschild black hole and a Kerr black hole of the same mass have potentially observable effects. The most obvious of these differences is the position of the innermost stable circular orbit (ISCO), which has a significant effect on the inner edge of an accretion disk. It is through determination of the physical size of the ISCO that the spins of black holes are determined.Less
This chapter examines the spin of a black hole. The spin is usually described as a nondimensional parameter, which can range from zero (a nonspinning black hole) to one (a situation described as “maximally spinning”). The differences in space-time between a nonspinning Schwarzschild black hole and a Kerr black hole of the same mass have potentially observable effects. The most obvious of these differences is the position of the innermost stable circular orbit (ISCO), which has a significant effect on the inner edge of an accretion disk. It is through determination of the physical size of the ISCO that the spins of black holes are determined.
Prasenjit Saha and Paul A. Taylor
- Published in print:
- 2018
- Published Online:
- July 2018
- ISBN:
- 9780198816461
- eISBN:
- 9780191858246
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780198816461.003.0003
- Subject:
- Physics, Particle Physics / Astrophysics / Cosmology
The concept of a metric is motivated and introduced, along with the introduction of relativistic quantities of spacetime, proper time, and Einstein’s field equations. Geodesics are cast in basic form ...
More
The concept of a metric is motivated and introduced, along with the introduction of relativistic quantities of spacetime, proper time, and Einstein’s field equations. Geodesics are cast in basic form as a Hamiltonian dynamical problem, which readers are guided towards exploring numerically themselves. The specific case of the Schwarzschild metric is presented, which is applicable to space around non-rotating black holes, and orbital motion around such objects is contrasted with that of Newtonian systems. Some well-known formulas for black hole phenomena are derived, such as those for light deflection (also known as gravitational lensing) and the innermost stable orbit, and their consequences discussed.Less
The concept of a metric is motivated and introduced, along with the introduction of relativistic quantities of spacetime, proper time, and Einstein’s field equations. Geodesics are cast in basic form as a Hamiltonian dynamical problem, which readers are guided towards exploring numerically themselves. The specific case of the Schwarzschild metric is presented, which is applicable to space around non-rotating black holes, and orbital motion around such objects is contrasted with that of Newtonian systems. Some well-known formulas for black hole phenomena are derived, such as those for light deflection (also known as gravitational lensing) and the innermost stable orbit, and their consequences discussed.