David McDowall, Richard McCleary, and Bradley J. Bartos
- Published in print:
- 2019
- Published Online:
- February 2021
- ISBN:
- 9780190943943
- eISBN:
- 9780190943981
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780190943943.003.0003
- Subject:
- Sociology, Social Research and Statistics
Chapter 3 develops the methods or strategies for building ARIMA noise models. At one level, the iterative identify-estimate-diagnose modeling strategy proposed by Box and Jenkins has changed little. ...
More
Chapter 3 develops the methods or strategies for building ARIMA noise models. At one level, the iterative identify-estimate-diagnose modeling strategy proposed by Box and Jenkins has changed little. At another level, the collective experience of time series experimenters leads to several modifications of the strategy. For the most part, these changes are aimed at solving practical problems. Compared to the 1970s, for example, modelers today pay more attention to transformations and to the usefulness and interpretability of an ARIMA model. The Box-Jenkins ARIMA noise modeling strategy is illustrated with detailed analyses of twelve time series. The example analyses include non-Normal time series, stationary white noise, autoregressive and moving average time series, nonstationary time series, and seasonal time series. The time series models build in Chapter 3 are re-introduced in later chapters.Less
Chapter 3 develops the methods or strategies for building ARIMA noise models. At one level, the iterative identify-estimate-diagnose modeling strategy proposed by Box and Jenkins has changed little. At another level, the collective experience of time series experimenters leads to several modifications of the strategy. For the most part, these changes are aimed at solving practical problems. Compared to the 1970s, for example, modelers today pay more attention to transformations and to the usefulness and interpretability of an ARIMA model. The Box-Jenkins ARIMA noise modeling strategy is illustrated with detailed analyses of twelve time series. The example analyses include non-Normal time series, stationary white noise, autoregressive and moving average time series, nonstationary time series, and seasonal time series. The time series models build in Chapter 3 are re-introduced in later chapters.
Richard McCleary, David McDowall, and Bradley J. Bartos
- Published in print:
- 2017
- Published Online:
- May 2017
- ISBN:
- 9780190661557
- eISBN:
- 9780190661595
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780190661557.003.0003
- Subject:
- Sociology, Methodology and Statistics
Chapter 3 introduces the Box-Jenkins AutoRegressive Integrated Moving Average (ARIMA) noise modeling strategy. The strategy begins with a test of the Normality assumption using a Kolomogov-Smirnov ...
More
Chapter 3 introduces the Box-Jenkins AutoRegressive Integrated Moving Average (ARIMA) noise modeling strategy. The strategy begins with a test of the Normality assumption using a Kolomogov-Smirnov (KS) statistic. Non-Normal time series are transformed with a Box-Cox procedure is applied. A tentative ARIMA noise model is then identified from a sample AutoCorrelation function (ACF). If the sample ACF identifies a nonstationary model, the time series is differenced. Integer orders p and q of the underlying autoregressive and moving average structures are then identified from the ACF and partial autocorrelation function (PACF). Parameters of the tentative ARIMA noise model are estimated with maximum likelihood methods. If the estimates lie within the stationary-invertible bounds and are statistically significant, the residuals of the tentative model are diagnosed to determine whether the model’s residuals are not different than white noise. If the tentative model’s residuals satisfy this assumption, the statistically adequate model is accepted. Otherwise, the identification-estimation-diagnosis ARIMA noise model-building strategy continues iteratively until it yields a statistically adequate model. The Box-Jenkins ARIMA noise modeling strategy is illustrated with detailed analyses of twelve time series. The example analyses include non-Normal time series, stationary white noise, autoregressive and moving average time series, nonstationary time series, and seasonal time series. The time series models built in Chapter 3 are re-introduced in later chapters. Chapter 3 concludes with a discussion and demonstration of auxiliary modeling procedures that are not part of the Box-Jenkins strategy. These auxiliary procedures include the use of information criteria to compare models, unit root tests of stationarity, and co-integration.Less
Chapter 3 introduces the Box-Jenkins AutoRegressive Integrated Moving Average (ARIMA) noise modeling strategy. The strategy begins with a test of the Normality assumption using a Kolomogov-Smirnov (KS) statistic. Non-Normal time series are transformed with a Box-Cox procedure is applied. A tentative ARIMA noise model is then identified from a sample AutoCorrelation function (ACF). If the sample ACF identifies a nonstationary model, the time series is differenced. Integer orders p and q of the underlying autoregressive and moving average structures are then identified from the ACF and partial autocorrelation function (PACF). Parameters of the tentative ARIMA noise model are estimated with maximum likelihood methods. If the estimates lie within the stationary-invertible bounds and are statistically significant, the residuals of the tentative model are diagnosed to determine whether the model’s residuals are not different than white noise. If the tentative model’s residuals satisfy this assumption, the statistically adequate model is accepted. Otherwise, the identification-estimation-diagnosis ARIMA noise model-building strategy continues iteratively until it yields a statistically adequate model. The Box-Jenkins ARIMA noise modeling strategy is illustrated with detailed analyses of twelve time series. The example analyses include non-Normal time series, stationary white noise, autoregressive and moving average time series, nonstationary time series, and seasonal time series. The time series models built in Chapter 3 are re-introduced in later chapters. Chapter 3 concludes with a discussion and demonstration of auxiliary modeling procedures that are not part of the Box-Jenkins strategy. These auxiliary procedures include the use of information criteria to compare models, unit root tests of stationarity, and co-integration.