*Jacques Franchi and Yves Le Jan*

- Published in print:
- 2012
- Published Online:
- January 2013
- ISBN:
- 9780199654109
- eISBN:
- 9780191745676
- Item type:
- chapter

- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199654109.003.0002
- Subject:
- Mathematics, Mathematical Physics

Basic notions of hyperbolic geometry are presented: geodesics, light rays, tangent bundles etc. These are systematically derived from properties of Minkowski space: the boundary of hyperbolic space ...
More

Basic notions of hyperbolic geometry are presented: geodesics, light rays, tangent bundles etc. These are systematically derived from properties of Minkowski space: the boundary of hyperbolic space is given by the light cone, geodesics by planes intersecting the light cone in two rays, and horospheres by affine hyperplanes parallel to a light ray and intersecting the hyperbolic space. Intrinsic formulae related to the hyperbolic distance are obtained by using only elementary linear algebra within R1,d . Harmonic conjugation is also discussed in this framework. Poincaré coordinates are extended to the boundary ∂H d . The geodesic and horocyclic flows are defined by the right action of A d on frames. The classical ball and upper-half-space models are presented, and the latter is related to Poincaré coordinates. A commutation relation in PSO(1, d) is established. Stable leaves and the Busemann function are introduced, and some physical interpretations are given.Less

Basic notions of hyperbolic geometry are presented: geodesics, light rays, tangent bundles etc. These are systematically derived from properties of Minkowski space: the boundary of hyperbolic space is given by the light cone, geodesics by planes intersecting the light cone in two rays, and horospheres by affine hyperplanes parallel to a light ray and intersecting the hyperbolic space. Intrinsic formulae related to the hyperbolic distance are obtained by using only elementary linear algebra within R^{1,d }. Harmonic conjugation is also discussed in this framework. Poincaré coordinates are extended to the boundary *∂*H* *^{d} . The geodesic and horocyclic flows are defined by the right action of A* *^{d} on frames. The classical ball and upper-half-space models are presented, and the latter is related to Poincaré coordinates. A commutation relation in PSO(1*, d*) is established. Stable leaves and the Busemann function are introduced, and some physical interpretations are given.

*Jacques Franchi and Yves Le Jan*

- Published in print:
- 2012
- Published Online:
- January 2013
- ISBN:
- 9780199654109
- eISBN:
- 9780191745676
- Item type:
- book

- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199654109.001.0001
- Subject:
- Mathematics, Mathematical Physics

The idea of this book is to illustrate an interplay between distinct domains of mathematics. Firstly, this book provides an introduction to hyperbolic geometry, based on the Lorentz group PSO(1, d) ...
More

The idea of this book is to illustrate an interplay between distinct domains of mathematics. Firstly, this book provides an introduction to hyperbolic geometry, based on the Lorentz group PSO(1, d) and its Iwasawa decomposition, commutation relations and Haar measure, and on the hyperbolic Laplacian. The Lorentz group plays a role in relativistic space–time analogous to rotations in Euclidean space. Hyperbolic geometry is the geometry of the unit pseudo-sphere. The boundary of hyperbolic space is defined as the set of light rays. Special attention is given to the geodesic and horocyclic flows. This book presents hyperbolic geometry via special relativity to benefit from physical intuition. Secondly, this book introduces some basic notions of stochastic analysis: the Wiener process, Itô's stochastic integral and Itô calculus. The book studies linear stochastic differential equations on groups of matrices, and diffusion processes on homogeneous spaces. Spherical and hyperbolic Brownian motions, diffusions on stable leaves, and relativistic diffusion are constructed. Thirdly, quotients of hyperbolic space under a discrete group of isometries are introduced, and form the framework in which some elements of hyperbolic dynamics are presented, especially the ergodicity of the geodesic and horocyclic flows. An analysis is given of the chaotic behaviour of the geodesic flow, using stochastic analysis methods. The main result is Sinai's central limit theorem. Some related results (including a construction of the Wiener measure) which complete the expositions of hyperbolic geometry and stochastic calculus are given in the appendices.Less

The idea of this book is to illustrate an interplay between distinct domains of mathematics. Firstly, this book provides an introduction to hyperbolic geometry, based on the Lorentz group PSO(1, *d*) and its Iwasawa decomposition, commutation relations and Haar measure, and on the hyperbolic Laplacian. The Lorentz group plays a role in relativistic space–time analogous to rotations in Euclidean space. Hyperbolic geometry is the geometry of the unit pseudo-sphere. The boundary of hyperbolic space is defined as the set of light rays. Special attention is given to the geodesic and horocyclic flows. This book presents hyperbolic geometry via special relativity to benefit from physical intuition. Secondly, this book introduces some basic notions of stochastic analysis: the Wiener process, Itô's stochastic integral and Itô calculus. The book studies linear stochastic differential equations on groups of matrices, and diffusion processes on homogeneous spaces. Spherical and hyperbolic Brownian motions, diffusions on stable leaves, and relativistic diffusion are constructed. Thirdly, quotients of hyperbolic space under a discrete group of isometries are introduced, and form the framework in which some elements of hyperbolic dynamics are presented, especially the ergodicity of the geodesic and horocyclic flows. An analysis is given of the chaotic behaviour of the geodesic flow, using stochastic analysis methods. The main result is Sinai's central limit theorem. Some related results (including a construction of the Wiener measure) which complete the expositions of hyperbolic geometry and stochastic calculus are given in the appendices.

*Jean-Michel Bismut*

- Published in print:
- 2011
- Published Online:
- October 2017
- ISBN:
- 9780691151298
- eISBN:
- 9781400840571
- Item type:
- book

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691151298.001.0001
- Subject:
- Mathematics, Geometry / Topology

This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators ...
More

This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.Less

This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.

*Christopher D. Sogge*

- Published in print:
- 2014
- Published Online:
- October 2017
- ISBN:
- 9780691160757
- eISBN:
- 9781400850549
- Item type:
- book

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691160757.001.0001
- Subject:
- Mathematics, Numerical Analysis

Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. The book gives a proof of the sharp Weyl ...
More

Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. The book gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace–Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. The book shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. It begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. The book avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. It also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, the book demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.Less

Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. The book gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace–Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. The book shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. It begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. The book avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. It also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, the book demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.