Kaloshin Vadim and Zhang Ke
- Published in print:
- 2020
- Published Online:
- May 2021
- ISBN:
- 9780691202525
- eISBN:
- 9780691204932
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202525.003.0005
- Subject:
- Physics, Theoretical, Computational, and Statistical Physics
This chapter assesses the choice of cohomology and Aubry-Mather type at the double resonance. It begins by choosing cohomology classes for the (unperturbed) slow mechanical system. As in the case of ...
More
This chapter assesses the choice of cohomology and Aubry-Mather type at the double resonance. It begins by choosing cohomology classes for the (unperturbed) slow mechanical system. As in the case of single-resonance, the strategy is to choose a continuous curve in the cohomology space and prove forcing equivalence up to a residual perturbation. To do this, one needs to use the duality between homology and cohomology. The chapter then proves Aubry-Mather type for the perturbed slow mechanical system and reverts to the original coordinates. As the system has been perturbed, one needs to modify the choice of cohomology classes to connect the single and double resonances. Finally, the chapter proves Theorem 2.2, proving the main theorem.Less
This chapter assesses the choice of cohomology and Aubry-Mather type at the double resonance. It begins by choosing cohomology classes for the (unperturbed) slow mechanical system. As in the case of single-resonance, the strategy is to choose a continuous curve in the cohomology space and prove forcing equivalence up to a residual perturbation. To do this, one needs to use the duality between homology and cohomology. The chapter then proves Aubry-Mather type for the perturbed slow mechanical system and reverts to the original coordinates. As the system has been perturbed, one needs to modify the choice of cohomology classes to connect the single and double resonances. Finally, the chapter proves Theorem 2.2, proving the main theorem.
Kaloshin Vadim and Zhang Ke
- Published in print:
- 2020
- Published Online:
- May 2021
- ISBN:
- 9780691202525
- eISBN:
- 9780691204932
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202525.003.0002
- Subject:
- Physics, Theoretical, Computational, and Statistical Physics
This chapter describes forcing relations, different diffusion mechanisms, and Aubry-Mather types. The Aubry set can be decomposed into disjoint invariant sets called static classes, which gives ...
More
This chapter describes forcing relations, different diffusion mechanisms, and Aubry-Mather types. The Aubry set can be decomposed into disjoint invariant sets called static classes, which gives important insight into the structure of the Aubry set. The chapter then formulates Theorem 2.2 and shows that it implies the book's main theorem. It utilizes the concept of forcing equivalence. The actual definition is not important for the current discussions, instead, the chapter states its main application to Arnold diffusion. The chapter also looks at symplectic coordinate changes. The definition of exact symplectic coordinate change for a time-periodic system is somewhat restrictive, and in particular, it does not apply directly to the linear coordinate change performed at the double resonance.Less
This chapter describes forcing relations, different diffusion mechanisms, and Aubry-Mather types. The Aubry set can be decomposed into disjoint invariant sets called static classes, which gives important insight into the structure of the Aubry set. The chapter then formulates Theorem 2.2 and shows that it implies the book's main theorem. It utilizes the concept of forcing equivalence. The actual definition is not important for the current discussions, instead, the chapter states its main application to Arnold diffusion. The chapter also looks at symplectic coordinate changes. The definition of exact symplectic coordinate change for a time-periodic system is somewhat restrictive, and in particular, it does not apply directly to the linear coordinate change performed at the double resonance.
Kaloshin Vadim and Zhang Ke
- Published in print:
- 2020
- Published Online:
- May 2021
- ISBN:
- 9780691202525
- eISBN:
- 9780691204932
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202525.003.0012
- Subject:
- Physics, Theoretical, Computational, and Statistical Physics
This chapter formulates and proves the jump mechanism. It constructs a variational problem which proves forcing equivalence for the original Hamiltonian using Definition 6.18. It first constructs a ...
More
This chapter formulates and proves the jump mechanism. It constructs a variational problem which proves forcing equivalence for the original Hamiltonian using Definition 6.18. It first constructs a special variational problem for the slow mechanical system. A solution of this variational problem is an orbit “jumping” from one homology class to the other. The chapter then modifies this variational problem for the fast time-periodic perturbation of the slow mechanical system. This is achieved by applying the perturbative results established in Chapter 7. Recall the original Hamiltonian system near a double resonance can be brought to a normal form and this normal form, in turn, is related to the perturbed slow system through coordinate change and energy reduction. The variational problem for the perturbed slow system can then be converted to a variational problem for the original.Less
This chapter formulates and proves the jump mechanism. It constructs a variational problem which proves forcing equivalence for the original Hamiltonian using Definition 6.18. It first constructs a special variational problem for the slow mechanical system. A solution of this variational problem is an orbit “jumping” from one homology class to the other. The chapter then modifies this variational problem for the fast time-periodic perturbation of the slow mechanical system. This is achieved by applying the perturbative results established in Chapter 7. Recall the original Hamiltonian system near a double resonance can be brought to a normal form and this normal form, in turn, is related to the perturbed slow system through coordinate change and energy reduction. The variational problem for the perturbed slow system can then be converted to a variational problem for the original.
Kaloshin Vadim and Zhang Ke
- Published in print:
- 2020
- Published Online:
- May 2021
- ISBN:
- 9780691202525
- eISBN:
- 9780691204932
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202525.003.0003
- Subject:
- Physics, Theoretical, Computational, and Statistical Physics
This chapter discusses the single-resonance non-degeneracy conditions and normal forms. It then formulates Theorem 3.3, which covers the forcing equivalence in the single-resonance regime. The ...
More
This chapter discusses the single-resonance non-degeneracy conditions and normal forms. It then formulates Theorem 3.3, which covers the forcing equivalence in the single-resonance regime. The classical partial averaging theory indicates that after a coordinate change, the system has the normal form away from punctures. In order to state the normal form, one needs an anisotropic norm adapted to the perturbative nature of the system. The chapter also uses the idea of Lochak to cover the action space with double resonances. A double resonance corresponds to a periodic orbit of the unperturbed system. Finally, the chapter looks at a lemma which is an easy consequence of the Dirichlet theorem.Less
This chapter discusses the single-resonance non-degeneracy conditions and normal forms. It then formulates Theorem 3.3, which covers the forcing equivalence in the single-resonance regime. The classical partial averaging theory indicates that after a coordinate change, the system has the normal form away from punctures. In order to state the normal form, one needs an anisotropic norm adapted to the perturbative nature of the system. The chapter also uses the idea of Lochak to cover the action space with double resonances. A double resonance corresponds to a periodic orbit of the unperturbed system. Finally, the chapter looks at a lemma which is an easy consequence of the Dirichlet theorem.
Kaloshin Vadim and Zhang Ke
- Published in print:
- 2020
- Published Online:
- May 2021
- ISBN:
- 9780691202525
- eISBN:
- 9780691204932
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202525.003.0007
- Subject:
- Physics, Theoretical, Computational, and Statistical Physics
This chapter explores perturbation aspects of the weak Kolmogorov-Arnold-Moser (KAM) theory. By perturbative weak KAM theory, we mean two things. How do the weak KAM solutions and the Mather, Aubry, ...
More
This chapter explores perturbation aspects of the weak Kolmogorov-Arnold-Moser (KAM) theory. By perturbative weak KAM theory, we mean two things. How do the weak KAM solutions and the Mather, Aubry, and Mañé sets respond to limits of the Hamiltonian? How do the weak KAM solutions change when we perturb a system, in particular, what happens when we perturb (1) completely integrable systems, and (2) autonomous systems by a time-periodic perturbation? The chapter states and proves results in both aspects, as a technical tool for proving forcing equivalence. It derives a special Lipshitz estimate of weak KAM solutions for perturbations of autonomous systems. The proof relies on semi-concavity of weak KAM solution.Less
This chapter explores perturbation aspects of the weak Kolmogorov-Arnold-Moser (KAM) theory. By perturbative weak KAM theory, we mean two things. How do the weak KAM solutions and the Mather, Aubry, and Mañé sets respond to limits of the Hamiltonian? How do the weak KAM solutions change when we perturb a system, in particular, what happens when we perturb (1) completely integrable systems, and (2) autonomous systems by a time-periodic perturbation? The chapter states and proves results in both aspects, as a technical tool for proving forcing equivalence. It derives a special Lipshitz estimate of weak KAM solutions for perturbations of autonomous systems. The proof relies on semi-concavity of weak KAM solution.