Bruce C. Bunker and William H. Casey
- Published in print:
- 2016
- Published Online:
- November 2020
- ISBN:
- 9780199384259
- eISBN:
- 9780197562987
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780199384259.003.0024
- Subject:
- Chemistry, Inorganic Chemistry
Although dissolution reactions involving water can etch and decompose oxides, truly catastrophic failures of oxide structures usually involve fractures and mechanical failures. Geologists and ...
More
Although dissolution reactions involving water can etch and decompose oxides, truly catastrophic failures of oxide structures usually involve fractures and mechanical failures. Geologists and geochemists have long recognized that water and ice both play key roles in promoting the fracture and crumbling of rock (see Chapter 17). Freezing and thawing create stresses that amplify the rate at which water attacks metal–oxygen bonds at the crack tip. The interplay between water and stressed oxides also leads to common failures in man-made objects, ranging from the growth of cracks from flaws in windshields to the rupture of optical fibers in communication systems. In this chapter, we outline how mechanical deformations change the reactivity of metal–oxygen bonds with respect to water and other chemicals, and how reactions on strained model compounds have been used to predict time to failure as a function of applied stress. The basic phenomenon of stress corrosion cracking is illustrated in Figure 16.1. Cracks can propagate through oxide materials at extremely fast rates, as anyone who has dropped a wine glass on the floor can attest. High-speed photography reveals that when glass shatters, cracks can spread at speeds of hundreds of meters per second, or half the speed of sound in the glass. At the other end of the spectrum, cracks in glass can grow from preexisting flaws so slowly that only a few chemical bonds are broken at the crack tip per hour. Because mechanical failures are associated with cracking, it is critical for design engineers to understand the factors that control crack growth rates for this enormous range of crack velocities (a factor of 1012). In addition, because it is difficult to measure crack velocities slower than 10−8 m/second, it is often necessary to make major extrapolations from measured data to predict the long-term reliability of glass and ceramic objects. Will an optical fiber under stress fail in 1 year or 10 years? Answering this question can require accurate extrapolations down to crack growth rates as low as 10−10 m/second.
Less
Although dissolution reactions involving water can etch and decompose oxides, truly catastrophic failures of oxide structures usually involve fractures and mechanical failures. Geologists and geochemists have long recognized that water and ice both play key roles in promoting the fracture and crumbling of rock (see Chapter 17). Freezing and thawing create stresses that amplify the rate at which water attacks metal–oxygen bonds at the crack tip. The interplay between water and stressed oxides also leads to common failures in man-made objects, ranging from the growth of cracks from flaws in windshields to the rupture of optical fibers in communication systems. In this chapter, we outline how mechanical deformations change the reactivity of metal–oxygen bonds with respect to water and other chemicals, and how reactions on strained model compounds have been used to predict time to failure as a function of applied stress. The basic phenomenon of stress corrosion cracking is illustrated in Figure 16.1. Cracks can propagate through oxide materials at extremely fast rates, as anyone who has dropped a wine glass on the floor can attest. High-speed photography reveals that when glass shatters, cracks can spread at speeds of hundreds of meters per second, or half the speed of sound in the glass. At the other end of the spectrum, cracks in glass can grow from preexisting flaws so slowly that only a few chemical bonds are broken at the crack tip per hour. Because mechanical failures are associated with cracking, it is critical for design engineers to understand the factors that control crack growth rates for this enormous range of crack velocities (a factor of 1012). In addition, because it is difficult to measure crack velocities slower than 10−8 m/second, it is often necessary to make major extrapolations from measured data to predict the long-term reliability of glass and ceramic objects. Will an optical fiber under stress fail in 1 year or 10 years? Answering this question can require accurate extrapolations down to crack growth rates as low as 10−10 m/second.
Bruce C. Bunker and William H. Casey
- Published in print:
- 2016
- Published Online:
- November 2020
- ISBN:
- 9780199384259
- eISBN:
- 9780197562987
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780199384259.003.0009
- Subject:
- Chemistry, Inorganic Chemistry
In most undergraduate chemistry classes, students are taught to consider reactions in which cations and anions dissolved in water are depicted as isolated ions. For example, the magnesium ion is ...
More
In most undergraduate chemistry classes, students are taught to consider reactions in which cations and anions dissolved in water are depicted as isolated ions. For example, the magnesium ion is depicted as Mg2+, or at best Mg2+(aq). For anions, these descriptions may be adequate (if not accurate). However, for cations, these abbreviations almost always fail to describe the critical chemical attributes of the dissolved species. A much more meaningful description of Mg2+ dissolved in water is [Mg(H2O)6]2+, because Mg2+ in water does not behave like a bare Mg2+ ion, nor do the waters coordinated to the Mg2+ behave anything like water molecules in the bulk fluid. In many respects, the [Mg(H2O)6]2+ ion acts like a dissolved molecular species. In this chapter, we discuss the simple solvation of anions and cations as a prelude to exploring more complex reactions of soluble oxide precursors called hydrolysis products. The two key classes of water–oxide reactions introduced here are acid–base and ligand exchange. First, consider how simple anions modify the structure and properties of water. As discussed in Chapter 3, water is a dynamic and highly fluxional “oxide” containing transient rings and clusters based on tetrahedral oxygen anions held together by linear hydrogen bonds. Simple halide ions can insert into this structure by occupying sites that would normally be occupied by other water molecules because they have radii (ranging from 0.13 to 0.22 nm in the series from F- to I-) that are comparable to that of the O2- ion (0.14 nm). Such substitution is clearly seen in the structures of ionic clathrate hydrates, where the anion can replace one and sometimes even two water molecules. Larger anions can also replace water molecules within clathrate hydrate cages. For example, carboxylate hydrate structures incorporate the carboxylate group within the water framework whereas the hydrophobic hydrocarbon “tails” occupy a cavity within the water framework, as in methane hydrate (see Chapter 3). Water molecules form hydrogen bonds to dissolved halide ions just as they can to other water molecules, as designated by OH-Y-.
Less
In most undergraduate chemistry classes, students are taught to consider reactions in which cations and anions dissolved in water are depicted as isolated ions. For example, the magnesium ion is depicted as Mg2+, or at best Mg2+(aq). For anions, these descriptions may be adequate (if not accurate). However, for cations, these abbreviations almost always fail to describe the critical chemical attributes of the dissolved species. A much more meaningful description of Mg2+ dissolved in water is [Mg(H2O)6]2+, because Mg2+ in water does not behave like a bare Mg2+ ion, nor do the waters coordinated to the Mg2+ behave anything like water molecules in the bulk fluid. In many respects, the [Mg(H2O)6]2+ ion acts like a dissolved molecular species. In this chapter, we discuss the simple solvation of anions and cations as a prelude to exploring more complex reactions of soluble oxide precursors called hydrolysis products. The two key classes of water–oxide reactions introduced here are acid–base and ligand exchange. First, consider how simple anions modify the structure and properties of water. As discussed in Chapter 3, water is a dynamic and highly fluxional “oxide” containing transient rings and clusters based on tetrahedral oxygen anions held together by linear hydrogen bonds. Simple halide ions can insert into this structure by occupying sites that would normally be occupied by other water molecules because they have radii (ranging from 0.13 to 0.22 nm in the series from F- to I-) that are comparable to that of the O2- ion (0.14 nm). Such substitution is clearly seen in the structures of ionic clathrate hydrates, where the anion can replace one and sometimes even two water molecules. Larger anions can also replace water molecules within clathrate hydrate cages. For example, carboxylate hydrate structures incorporate the carboxylate group within the water framework whereas the hydrophobic hydrocarbon “tails” occupy a cavity within the water framework, as in methane hydrate (see Chapter 3). Water molecules form hydrogen bonds to dissolved halide ions just as they can to other water molecules, as designated by OH-Y-.