*Ben Brubaker, Daniel Bump, and Solomon Friedberg*

- Published in print:
- 2011
- Published Online:
- October 2017
- ISBN:
- 9780691150659
- eISBN:
- 9781400838998
- Item type:
- chapter

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691150659.003.0004
- Subject:
- Mathematics, Combinatorics / Graph Theory / Discrete Mathematics

This chapter shows that Weyl group multiple Dirichlet series are expected to be Whittaker coefficients of metaplectic Eisenstein series. The fact that Whittaker coefficients of Eisenstein series ...
More

This chapter shows that Weyl group multiple Dirichlet series are expected to be Whittaker coefficients of metaplectic Eisenstein series. The fact that Whittaker coefficients of Eisenstein series reduce to the crystal description that was given in Chapter 2 is proved for Type A. On the adele group, the corresponding local computation reduces to the evaluation of a type of λ-adic integral. These were considered by McNamara, who reduced the integrals to sums over crystals by a very interesting method. A full treatment of this topic is outside the scope of this work, but it is introduced in this chapter by considering the case where n = 1. In this chapter, F is used to denote a nonarchimedean local field and F to denote a global field. The values of the Whittaker function are Schur polynomials multiplied by the normalization constant.Less

This chapter shows that Weyl group multiple Dirichlet series are expected to be Whittaker coefficients of metaplectic Eisenstein series. The fact that Whittaker coefficients of Eisenstein series reduce to the crystal description that was given in Chapter 2 is proved for Type A. On the adele group, the corresponding local computation reduces to the evaluation of a type of *λ*-adic integral. These were considered by McNamara, who reduced the integrals to sums over crystals by a very interesting method. A full treatment of this topic is outside the scope of this work, but it is introduced in this chapter by considering the case where *n* = 1. In this chapter, *F* is used to denote a nonarchimedean local field and *F* to denote a global field. The values of the Whittaker function are Schur polynomials multiplied by the normalization constant.

*Ben Brubaker, Daniel Bump, and Solomon Friedberg*

- Published in print:
- 2011
- Published Online:
- October 2017
- ISBN:
- 9780691150659
- eISBN:
- 9781400838998
- Item type:
- chapter

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691150659.003.0020
- Subject:
- Mathematics, Combinatorics / Graph Theory / Discrete Mathematics

This chapter describes the properties of Kashiwara's crystal and its role in unipotent p-adic integrations related to Whittaker functions. In many cases, integrations of representation theoretic ...
More

This chapter describes the properties of Kashiwara's crystal and its role in unipotent p-adic integrations related to Whittaker functions. In many cases, integrations of representation theoretic import over the maximal unipotent subgroup of a p-adic group can be replaced by a sum over Kashiwara's crystal. Partly motivated by the crystal description presented in Chapter 2 of this book, this perspective was advocated by Bump and Nakasuji. Later work by McNamara and Kim and Lee extended this philosophy yet further. Indeed, McNamara shows that the computation of the metaplectic Whittaker function is initially given as a sum over Kashiwara's crystal. The chapter considers Kostant's generating function, the character of the quantized enveloping algebra, and its association with Kashiwara's crystal, along with the Kostant partition function and the Weyl character formula.Less

This chapter describes the properties of Kashiwara's crystal and its role in unipotent *p*-adic integrations related to Whittaker functions. In many cases, integrations of representation theoretic import over the maximal unipotent subgroup of a *p*-adic group can be replaced by a sum over Kashiwara's crystal. Partly motivated by the crystal description presented in Chapter 2 of this book, this perspective was advocated by Bump and Nakasuji. Later work by McNamara and Kim and Lee extended this philosophy yet further. Indeed, McNamara shows that the computation of the metaplectic Whittaker function is initially given as a sum over Kashiwara's crystal. The chapter considers Kostant's generating function, the character of the quantized enveloping algebra, and its association with Kashiwara's crystal, along with the Kostant partition function and the Weyl character formula.

*Ben Brubaker, Daniel Bump, and Solomon Friedberg*

- Published in print:
- 2011
- Published Online:
- October 2017
- ISBN:
- 9780691150659
- eISBN:
- 9781400838998
- Item type:
- chapter

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691150659.003.0005
- Subject:
- Mathematics, Combinatorics / Graph Theory / Discrete Mathematics

This chapter introduces the Tokuyama's Theorem, first by writing the Weyl character formula and restating Schur polynomials, the values of the Whittaker function multiplied by the normalization ...
More

This chapter introduces the Tokuyama's Theorem, first by writing the Weyl character formula and restating Schur polynomials, the values of the Whittaker function multiplied by the normalization constant. The λ-parts of Whittaker coefficients of Eisenstein series can be profitably regarded as a deformation of the numerator in the Weyl character formula. This leads to deformations of the Weyl character formula. Tokuyama gave such a deformation. It is an expression of ssubscript Greek small letter lamda(z) as a ratio of a numerator to a denominator. The denominator is a deformation of the Weyl denominator, and the numerator is a sum over Gelfand-Tsetlin patterns with top row λ + ρ.Less

This chapter introduces the Tokuyama's Theorem, first by writing the Weyl character formula and restating Schur polynomials, the values of the Whittaker function multiplied by the normalization constant. The *λ*-parts of Whittaker coefficients of Eisenstein series can be profitably regarded as a deformation of the numerator in the Weyl character formula. This leads to deformations of the Weyl character formula. Tokuyama gave such a deformation. It is an expression of *s*subscript Greek small letter lamda(*z*) as a ratio of a numerator to a denominator. The denominator is a deformation of the Weyl denominator, and the numerator is a sum over Gelfand-Tsetlin patterns with top row λ + ρ.