Joram Lindenstrauss, David Preiss, and Tiˇser Jaroslav
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153551
- eISBN:
- 9781400842698
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153551.003.0014
- Subject:
- Mathematics, Analysis
This chapter discusses Γₙ-nullness of sets porous “¹at infinity” and/or existence of many points of Fréchet differentiability of Lipschitz maps into n-dimensional spaces. The results reveal a ...
More
This chapter discusses Γₙ-nullness of sets porous “¹at infinity” and/or existence of many points of Fréchet differentiability of Lipschitz maps into n-dimensional spaces. The results reveal a σ-porous set whose complement is null on all n-dimensional surfaces and the multidimensional mean value estimates fail even for ε-Fréchet derivatives. Previous chapters have established conditions on a Banach space X under which porous sets in X are Γₙ-null and/or the the multidimensional mean value estimates for Fréchet derivatives of Lipschitz maps into n-dimensional spaces hold. This chapter investigates in what sense the assumptions of these main results are close to being optimal.Less
This chapter discusses Γₙ-nullness of sets porous “¹at infinity” and/or existence of many points of Fréchet differentiability of Lipschitz maps into n-dimensional spaces. The results reveal a σ-porous set whose complement is null on all n-dimensional surfaces and the multidimensional mean value estimates fail even for ε-Fréchet derivatives. Previous chapters have established conditions on a Banach space X under which porous sets in X are Γₙ-null and/or the the multidimensional mean value estimates for Fréchet derivatives of Lipschitz maps into n-dimensional spaces hold. This chapter investigates in what sense the assumptions of these main results are close to being optimal.
Joram Lindenstrauss, David Preiss, and Tiˇser Jaroslav
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153551
- eISBN:
- 9781400842698
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153551.003.0001
- Subject:
- Mathematics, Analysis
This book deals with the existence of Fréchet derivatives of Lipschitz functions from X to Y, where X is an Asplund space and Y has the Radon-Nikodým property (RNP). It considers whether every ...
More
This book deals with the existence of Fréchet derivatives of Lipschitz functions from X to Y, where X is an Asplund space and Y has the Radon-Nikodým property (RNP). It considers whether every countable collection of real-valued Lipschitz functions on an Asplund space has a common point of Fréchet differentiability. It also examines the conditions under which all Lipschitz mapping of X to finite dimensional spaces not only possess points of Fréchet differentiability, but possess so many of them that even the multidimensional mean value estimate holds. Other topics include the notion of the Radon-Nikodým property and main results on Gâteaux differentiability of Lipschitz functions and related notions of null sets; separable determination and variational principles; and differentiability of Lipschitz maps on Hilbert spaces.Less
This book deals with the existence of Fréchet derivatives of Lipschitz functions from X to Y, where X is an Asplund space and Y has the Radon-Nikodým property (RNP). It considers whether every countable collection of real-valued Lipschitz functions on an Asplund space has a common point of Fréchet differentiability. It also examines the conditions under which all Lipschitz mapping of X to finite dimensional spaces not only possess points of Fréchet differentiability, but possess so many of them that even the multidimensional mean value estimate holds. Other topics include the notion of the Radon-Nikodým property and main results on Gâteaux differentiability of Lipschitz functions and related notions of null sets; separable determination and variational principles; and differentiability of Lipschitz maps on Hilbert spaces.
Joram Lindenstrauss, David Preiss, and Tiˇser Jaroslav
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153551
- eISBN:
- 9781400842698
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153551.003.0006
- Subject:
- Mathematics, Analysis
This chapter gives an account of the known genuinely infinite dimensional results proving Fréchet differentiability almost everywhere except for Γ-null sets. Γ-null sets provide the only notion of ...
More
This chapter gives an account of the known genuinely infinite dimensional results proving Fréchet differentiability almost everywhere except for Γ-null sets. Γ-null sets provide the only notion of negligible sets with which a Fréchet differentiability result is known. Porous sets appear as sets at which Gâteaux derivatives can behave irregularly, and they turn out to be the only obstacle to validity of a Fréchet differentiability result Γ-almost everywhere. Furthermore, geometry of the space may (or may not) guarantee that porous sets are Γ-null. The chapter also shows that on some infinite dimensional Banach spaces countable collections of real-valued Lipschitz functions, and even of fairly general Lipschitz maps to infinite dimensional spaces, have a common point of Fréchet differentiability.Less
This chapter gives an account of the known genuinely infinite dimensional results proving Fréchet differentiability almost everywhere except for Γ-null sets. Γ-null sets provide the only notion of negligible sets with which a Fréchet differentiability result is known. Porous sets appear as sets at which Gâteaux derivatives can behave irregularly, and they turn out to be the only obstacle to validity of a Fréchet differentiability result Γ-almost everywhere. Furthermore, geometry of the space may (or may not) guarantee that porous sets are Γ-null. The chapter also shows that on some infinite dimensional Banach spaces countable collections of real-valued Lipschitz functions, and even of fairly general Lipschitz maps to infinite dimensional spaces, have a common point of Fréchet differentiability.
Joram Lindenstrauss, David Preiss, and Tiˇser Jaroslav
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153551
- eISBN:
- 9781400842698
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153551.003.0013
- Subject:
- Mathematics, Analysis
This chapter shows that if a Banach space with a Fréchet smooth norm is asymptotically smooth with modulus o(tⁿ logⁿ⁻¹(1/t)) then every Lipschitz map of X to a space of dimension not exceeding n has ...
More
This chapter shows that if a Banach space with a Fréchet smooth norm is asymptotically smooth with modulus o(tⁿ logⁿ⁻¹(1/t)) then every Lipschitz map of X to a space of dimension not exceeding n has many points of Fréchet differentiability. In particular, it proves that two real-valued Lipschitz functions on a Hilbert space have a common point of Fréchet differentiability. The chapter first presents the theorem whose assumptions hold for any space X with separable dual, includes the result that real-valued Lipschitz functions on such spaces have points of Fréchet differentiability, and takes into account the corresponding mean value estimate. The chapter then gives the estimate for a “regularity parameter” and reduces the theorem to a special case. Finally, it discusses simplifications of the arguments of the proof of the main result in some special situations.Less
This chapter shows that if a Banach space with a Fréchet smooth norm is asymptotically smooth with modulus o(tⁿ logⁿ⁻¹(1/t)) then every Lipschitz map of X to a space of dimension not exceeding n has many points of Fréchet differentiability. In particular, it proves that two real-valued Lipschitz functions on a Hilbert space have a common point of Fréchet differentiability. The chapter first presents the theorem whose assumptions hold for any space X with separable dual, includes the result that real-valued Lipschitz functions on such spaces have points of Fréchet differentiability, and takes into account the corresponding mean value estimate. The chapter then gives the estimate for a “regularity parameter” and reduces the theorem to a special case. Finally, it discusses simplifications of the arguments of the proof of the main result in some special situations.
Joram Lindenstrauss, David Preiss, and Tiˇser Jaroslav
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153551
- eISBN:
- 9781400842698
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153551.003.0015
- Subject:
- Mathematics, Analysis
This chapter presents the current development of the first, unpublished proof of existence of points Fréchet differentiability of Lipschitz mappings to two-dimensional spaces. For functions into ...
More
This chapter presents the current development of the first, unpublished proof of existence of points Fréchet differentiability of Lipschitz mappings to two-dimensional spaces. For functions into higher dimensional spaces the method does not lead to a point of Gâteaux differentiability but constructs points of asymptotic Fréchet differentiability. The proof uses perturbations that are not additive, rather than the variational approach, but still provides (asymptotic) Fréchet derivatives in every slice of Gâteaux derivatives. However, it cannot be used to prove existence of points of Fréchet differentiability of Lipschitz mappings of Hilbert spaces to three-dimensional spaces. The results are negative in the sense that an appropriate version of the multidimensional mean value estimate holds.Less
This chapter presents the current development of the first, unpublished proof of existence of points Fréchet differentiability of Lipschitz mappings to two-dimensional spaces. For functions into higher dimensional spaces the method does not lead to a point of Gâteaux differentiability but constructs points of asymptotic Fréchet differentiability. The proof uses perturbations that are not additive, rather than the variational approach, but still provides (asymptotic) Fréchet derivatives in every slice of Gâteaux derivatives. However, it cannot be used to prove existence of points of Fréchet differentiability of Lipschitz mappings of Hilbert spaces to three-dimensional spaces. The results are negative in the sense that an appropriate version of the multidimensional mean value estimate holds.
Joram Lindenstrauss, David Preiss, and Tiˇser Jaroslav
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153551
- eISBN:
- 9781400842698
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153551.003.0011
- Subject:
- Mathematics, Analysis
This chapter demonstrates that the results about smallness of porous sets, and so also of sets of irregularity points of a given Lipschitz function, can be used to show existence of points of (at ...
More
This chapter demonstrates that the results about smallness of porous sets, and so also of sets of irregularity points of a given Lipschitz function, can be used to show existence of points of (at least) ε-Fréchet differentiability of vector-valued functions. The approach involves combining this new idea with the basic notion that points of ε-Fréchet differentiability should appear in small slices of the set of Gâteaux derivatives. The chapter obtains very precise results on existence of points of ε-Fréchet differentiability for Lipschitz maps with finite dimensional range. The main result applies when every porous set is contained in the unions of a σ-directionally porous (and hence Haar null) set and a Γₙ-null Gsubscript Small Delta set.Less
This chapter demonstrates that the results about smallness of porous sets, and so also of sets of irregularity points of a given Lipschitz function, can be used to show existence of points of (at least) ε-Fréchet differentiability of vector-valued functions. The approach involves combining this new idea with the basic notion that points of ε-Fréchet differentiability should appear in small slices of the set of Gâteaux derivatives. The chapter obtains very precise results on existence of points of ε-Fréchet differentiability for Lipschitz maps with finite dimensional range. The main result applies when every porous set is contained in the unions of a σ-directionally porous (and hence Haar null) set and a Γₙ-null Gsubscript Small Delta set.
Joram Lindenstrauss, David Preiss, and Tiˇser Jaroslav
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153551
- eISBN:
- 9781400842698
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153551.003.0016
- Subject:
- Mathematics, Analysis
This chapter presents a separate, essentially self-contained, nonvariational proof of existence of points of Fréchet differentiability of R²-valued Lipschitz maps on Hilbert spaces. It begins with ...
More
This chapter presents a separate, essentially self-contained, nonvariational proof of existence of points of Fréchet differentiability of R²-valued Lipschitz maps on Hilbert spaces. It begins with the theorem stating that every Lipschitz map of a Hilbert space to a two-dimensional space has points of Fréchet differentiability. This is followed by a lemma, which is stated in an arbitrary Hilbert space but whose validity in the general case follows from its three-dimensional version. The chapter then explains the proof of the theorem and of the lemma stated above. In particular, it considers two cases, one corresponding to irregular behavior and the other to regular behavior.Less
This chapter presents a separate, essentially self-contained, nonvariational proof of existence of points of Fréchet differentiability of R²-valued Lipschitz maps on Hilbert spaces. It begins with the theorem stating that every Lipschitz map of a Hilbert space to a two-dimensional space has points of Fréchet differentiability. This is followed by a lemma, which is stated in an arbitrary Hilbert space but whose validity in the general case follows from its three-dimensional version. The chapter then explains the proof of the theorem and of the lemma stated above. In particular, it considers two cases, one corresponding to irregular behavior and the other to regular behavior.
Joram Lindenstrauss, David Preiss, and Jaroslav Tier
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153551
- eISBN:
- 9781400842698
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153551.001.0001
- Subject:
- Mathematics, Analysis
This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the ...
More
This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the question turns out to be closely related to porous sets in Banach spaces, it provides a bridge between descriptive set theory and the classical topic of existence of derivatives of vector-valued Lipschitz functions. The topic is relevant to classical analysis and descriptive set theory on Banach spaces. The book opens several new research directions in this area of geometric nonlinear functional analysis. The new methods developed here include a game approach to perturbational variational principles that is of independent interest. Detailed explanation of the underlying ideas and motivation behind the proofs of the new results on Fréchet differentiability of vector-valued functions should make these arguments accessible to a wider audience. The most important special case of the differentiability results, that Lipschitz mappings from a Hilbert space into the plane have points of Fréchet differentiability, is given its own chapter with a proof that is independent of much of the work done to prove more general results. The book raises several open questions concerning its two main topics.Less
This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the question turns out to be closely related to porous sets in Banach spaces, it provides a bridge between descriptive set theory and the classical topic of existence of derivatives of vector-valued Lipschitz functions. The topic is relevant to classical analysis and descriptive set theory on Banach spaces. The book opens several new research directions in this area of geometric nonlinear functional analysis. The new methods developed here include a game approach to perturbational variational principles that is of independent interest. Detailed explanation of the underlying ideas and motivation behind the proofs of the new results on Fréchet differentiability of vector-valued functions should make these arguments accessible to a wider audience. The most important special case of the differentiability results, that Lipschitz mappings from a Hilbert space into the plane have points of Fréchet differentiability, is given its own chapter with a proof that is independent of much of the work done to prove more general results. The book raises several open questions concerning its two main topics.
Joram Lindenstrauss, David Preiss, and Tiˇser Jaroslav
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153551
- eISBN:
- 9781400842698
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153551.003.0009
- Subject:
- Mathematics, Analysis
This chapter presents a number of results and notions that will be used in subsequent chapters. In particular, it considers the concept of regular differentiability and the lemma on deformation of ...
More
This chapter presents a number of results and notions that will be used in subsequent chapters. In particular, it considers the concept of regular differentiability and the lemma on deformation of n-dimensional surfaces. The idea is to deform a flat surface passing through a point x (along which we imagine that a certain function f is almost affine) to a surface passing through a point witnessing that f is not Fréchet differentiable at x. This is done in such a way that certain “energy” associated to surfaces increases less than the “energy” of the functionf along the surface. The chapter also discusses linear operators and tensor products, various notions and notation related to Fréchet differentiability, and deformation of surfaces controlled by ωⁿ. Finally, it proves some integral estimates of derivatives of Lipschitz maps between Euclidean spaces (not necessarily of the same dimension).Less
This chapter presents a number of results and notions that will be used in subsequent chapters. In particular, it considers the concept of regular differentiability and the lemma on deformation of n-dimensional surfaces. The idea is to deform a flat surface passing through a point x (along which we imagine that a certain function f is almost affine) to a surface passing through a point witnessing that f is not Fréchet differentiable at x. This is done in such a way that certain “energy” associated to surfaces increases less than the “energy” of the functionf along the surface. The chapter also discusses linear operators and tensor products, various notions and notation related to Fréchet differentiability, and deformation of surfaces controlled by ωⁿ. Finally, it proves some integral estimates of derivatives of Lipschitz maps between Euclidean spaces (not necessarily of the same dimension).