Ronald K. Pearson
- Published in print:
- 1999
- Published Online:
- November 2020
- ISBN:
- 9780195121988
- eISBN:
- 9780197561294
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780195121988.003.0006
- Subject:
- Computer Science, Mathematical Theory of Computation
As noted In Chapter 1, the general class of NARMAX models is extremely broad and includes almost all of the other discrete-time model classes discussed in this book, linear and nonlinear. Because ...
More
As noted In Chapter 1, the general class of NARMAX models is extremely broad and includes almost all of the other discrete-time model classes discussed in this book, linear and nonlinear. Because of its enormity, little can be said about the qualitative behavior of the NARMAX family in general, but it is surprising how much can be said about the behavior of some important subclasses. In particular, there are sharp qualitative distinctions between nonlinear moving average models (NMAX models) and nonlinear autoregressive models (NARX models). Since these representations are equivalent for linear models (c.f. Chapter 2), this observation highlights one important difference between linear and nonlinear discrete-time dynamic models. Consequently, this chapter focuses primarily on the structure and qualitative behavior of various subclasses of the NARMAX family, particularly the NMAX and NARX classes. More specifically, Sec. 4.1 presents a brief discussion of the general NARMAX class, defining five important subclasses that are discussed in subsequent sections: the NMAX class (Sec. 4.2), the NARX class (Sec. 4.3), the class of (structurally) additive NARMAX models (Sec. 4.4), the class of polynomial NARMAX models (Sec. 4.5), and the class of rational NARMAX models (Sec. 4.6). More complex NARMAX models are then discussed briefly in Sec. 4.7 and Sec. 4.8 concludes the chapter with a brief summary of the NARMAX class. The general class of NARMAX models was defined and discussed in a series of papers by Billings and various co-authors (Billings and Voon, 1983, 1986a; Leontartis and Billings, 1985; Zhu and Billings, 1993) and is defined by the equation . . . y(k) = F(y(k – 1), . . . , y(k – p), u(k), . . . , u(k – q), e(k – 1), . . . , e(k – r)) + e(k). (4.1) . . . Because this book is primarily concerned with the qualitative input/output behavior of these models, it will be assumed that e(k) = 0 identically as in the class of linear ARMAX models discussed in Chapter 2.
Less
As noted In Chapter 1, the general class of NARMAX models is extremely broad and includes almost all of the other discrete-time model classes discussed in this book, linear and nonlinear. Because of its enormity, little can be said about the qualitative behavior of the NARMAX family in general, but it is surprising how much can be said about the behavior of some important subclasses. In particular, there are sharp qualitative distinctions between nonlinear moving average models (NMAX models) and nonlinear autoregressive models (NARX models). Since these representations are equivalent for linear models (c.f. Chapter 2), this observation highlights one important difference between linear and nonlinear discrete-time dynamic models. Consequently, this chapter focuses primarily on the structure and qualitative behavior of various subclasses of the NARMAX family, particularly the NMAX and NARX classes. More specifically, Sec. 4.1 presents a brief discussion of the general NARMAX class, defining five important subclasses that are discussed in subsequent sections: the NMAX class (Sec. 4.2), the NARX class (Sec. 4.3), the class of (structurally) additive NARMAX models (Sec. 4.4), the class of polynomial NARMAX models (Sec. 4.5), and the class of rational NARMAX models (Sec. 4.6). More complex NARMAX models are then discussed briefly in Sec. 4.7 and Sec. 4.8 concludes the chapter with a brief summary of the NARMAX class. The general class of NARMAX models was defined and discussed in a series of papers by Billings and various co-authors (Billings and Voon, 1983, 1986a; Leontartis and Billings, 1985; Zhu and Billings, 1993) and is defined by the equation . . . y(k) = F(y(k – 1), . . . , y(k – p), u(k), . . . , u(k – q), e(k – 1), . . . , e(k – r)) + e(k). (4.1) . . . Because this book is primarily concerned with the qualitative input/output behavior of these models, it will be assumed that e(k) = 0 identically as in the class of linear ARMAX models discussed in Chapter 2.
Krzysztof A. Sikorski
- Published in print:
- 2001
- Published Online:
- November 2020
- ISBN:
- 9780195106909
- eISBN:
- 9780197561010
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780195106909.003.0007
- Subject:
- Computer Science, Mathematical Theory of Computation
In this chapter we consider the approximation of fixed points of noncontractive functions with respect to the absolute error criterion. In this case the functions may have multiple and/or whole ...
More
In this chapter we consider the approximation of fixed points of noncontractive functions with respect to the absolute error criterion. In this case the functions may have multiple and/or whole manifolds of fixed points. We analyze methods based on sequential function evaluations as information. The simple iteration usually does not converge in this case, and the problem becomes much more difficult to solve. We prove that even in the two-dimensional case the problem has infinite worst case complexity. This means that no methods exist that solve the problem with arbitrarily small error tolerance for some “bad” functions. In the univariate case the problem is solvable, and a bisection envelope method is optimal. These results are in contrast with the solution under the residual error criterion. The problem then becomes solvable, although with exponential complexity, as outlined in the annotations. Therefore, simplicial and/or homotopy continuation and all methods based on function evaluations exhibit exponential worst case cost for solving the problem in the residual sense. These results indicate the need of average case analysis, since for many test functions the existing algorithms computed ε-approximations with polynomial in 1/ε cost.
Less
In this chapter we consider the approximation of fixed points of noncontractive functions with respect to the absolute error criterion. In this case the functions may have multiple and/or whole manifolds of fixed points. We analyze methods based on sequential function evaluations as information. The simple iteration usually does not converge in this case, and the problem becomes much more difficult to solve. We prove that even in the two-dimensional case the problem has infinite worst case complexity. This means that no methods exist that solve the problem with arbitrarily small error tolerance for some “bad” functions. In the univariate case the problem is solvable, and a bisection envelope method is optimal. These results are in contrast with the solution under the residual error criterion. The problem then becomes solvable, although with exponential complexity, as outlined in the annotations. Therefore, simplicial and/or homotopy continuation and all methods based on function evaluations exhibit exponential worst case cost for solving the problem in the residual sense. These results indicate the need of average case analysis, since for many test functions the existing algorithms computed ε-approximations with polynomial in 1/ε cost.