Peter Scholze and Jared Weinstein
- Published in print:
- 2020
- Published Online:
- January 2021
- ISBN:
- 9780691202082
- eISBN:
- 9780691202150
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202082.003.0009
- Subject:
- Mathematics, Geometry / Topology
This chapter evaluates the complements on the pro-étale topology. It addresses two issues raised in the previous lecture on the pro-étale topology. The first issue concerned descent, or more ...
More
This chapter evaluates the complements on the pro-étale topology. It addresses two issues raised in the previous lecture on the pro-étale topology. The first issue concerned descent, or more specifically pro-étale descent for perfectoid spaces. The other issue was that the property of being a pro-étale morphism is not local for the pro-étale topology on the target. The chapter then looks at quasi-pro-étale morphisms, as well as G-torsors. A morphism of perfectoid spaces is quasi-pro-étale if for any strictly totally disconnected perfectoid space with a map, the pullback is pro-étale. Using this definition, one can give an equivalent characterization of diamonds.Less
This chapter evaluates the complements on the pro-étale topology. It addresses two issues raised in the previous lecture on the pro-étale topology. The first issue concerned descent, or more specifically pro-étale descent for perfectoid spaces. The other issue was that the property of being a pro-étale morphism is not local for the pro-étale topology on the target. The chapter then looks at quasi-pro-étale morphisms, as well as G-torsors. A morphism of perfectoid spaces is quasi-pro-étale if for any strictly totally disconnected perfectoid space with a map, the pullback is pro-étale. Using this definition, one can give an equivalent characterization of diamonds.
Peter Scholze and Jared Weinstein
- Published in print:
- 2020
- Published Online:
- January 2021
- ISBN:
- 9780691202082
- eISBN:
- 9780691202150
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202082.003.0020
- Subject:
- Mathematics, Geometry / Topology
This chapter studies families of affine Grassmannians. In the geometric case, if X is a smooth curve over a field k, Beilinson-Drinfeld defined a family of affine Grassmannians whose fiber ...
More
This chapter studies families of affine Grassmannians. In the geometric case, if X is a smooth curve over a field k, Beilinson-Drinfeld defined a family of affine Grassmannians whose fiber parametrizes G-torsors on X. If one fixes a coordinate at x, this gets identified with the affine Grassmannian considered previously. Over fibers with distinct points xi, one gets a product of n copies of the affine Grassmannian, while over fibers with all points xi = x equal, one gets just one copy of the affine Grassmannian: This is possible as the affine Grassmannian is infinite-dimensional. However, sometimes it is useful to remember more information when the points collide. The chapter then discusses the convolution affine Grassmannian in the setting of the previous lecture.Less
This chapter studies families of affine Grassmannians. In the geometric case, if X is a smooth curve over a field k, Beilinson-Drinfeld defined a family of affine Grassmannians whose fiber parametrizes G-torsors on X. If one fixes a coordinate at x, this gets identified with the affine Grassmannian considered previously. Over fibers with distinct points xi, one gets a product of n copies of the affine Grassmannian, while over fibers with all points xi = x equal, one gets just one copy of the affine Grassmannian: This is possible as the affine Grassmannian is infinite-dimensional. However, sometimes it is useful to remember more information when the points collide. The chapter then discusses the convolution affine Grassmannian in the setting of the previous lecture.
Peter Scholze and Jared Weinstein
- Published in print:
- 2020
- Published Online:
- January 2021
- ISBN:
- 9780691202082
- eISBN:
- 9780691202150
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202082.003.0022
- Subject:
- Mathematics, Geometry / Topology
This chapter discusses vector bundles and G-torsors on the relative Fargues-Fontaine curve. This is in preparation for the examination of moduli spaces of shtukas. Kedlaya-Liu prove two important ...
More
This chapter discusses vector bundles and G-torsors on the relative Fargues-Fontaine curve. This is in preparation for the examination of moduli spaces of shtukas. Kedlaya-Liu prove two important foundational theorems about vector bundles on the Fargues-Fontaine curve. The first is the semicontinuity of the Newton polygon. The second theorem of Kedlaya-Liu concerns the open locus where the Newton polygon is constant 0. For the applications to the moduli spaces of shtukas, one needs to generalize the results to the case of G-torsors for a general reductive group G. The chapter then identifies the classification of G-torsors. It also looks at the semicontinuity of the Newton point.Less
This chapter discusses vector bundles and G-torsors on the relative Fargues-Fontaine curve. This is in preparation for the examination of moduli spaces of shtukas. Kedlaya-Liu prove two important foundational theorems about vector bundles on the Fargues-Fontaine curve. The first is the semicontinuity of the Newton polygon. The second theorem of Kedlaya-Liu concerns the open locus where the Newton polygon is constant 0. For the applications to the moduli spaces of shtukas, one needs to generalize the results to the case of G-torsors for a general reductive group G. The chapter then identifies the classification of G-torsors. It also looks at the semicontinuity of the Newton point.