Jean A. Miller and Thomas M. Frost
- Published in print:
- 2004
- Published Online:
- February 2013
- ISBN:
- 9780226789552
- eISBN:
- 9780226789583
- Item type:
- chapter
- Publisher:
- University of Chicago Press
- DOI:
- 10.7208/chicago/9780226789583.003.0008
- Subject:
- Biology, Ecology
Deborah Mayo (1996) has reinterpreted classic frequentist statistics into a much more general framework that she calls error statistics to indicate the continuing centrality and importance of error ...
More
Deborah Mayo (1996) has reinterpreted classic frequentist statistics into a much more general framework that she calls error statistics to indicate the continuing centrality and importance of error probabilities and error-probabilistic reasoning in testing hypotheses. Her generalization of statistical reasoning above and beyond any one statistical test provides a consistent and coherent approach to testing and assessing both quantitative and qualitative evidence and hence can be directly applied to whole-ecosystem experiments. This chapter argues that understanding the types of errors that replication controls allows for better design and interpretation of unreplicated and semi-replicated whole-ecosystem experiments. It begins by clarifying the meaning of three common concepts used in debates about what can and cannot be learned from whole-ecosystem manipulations: replication, BACI design, and pseudoreplication. It then rephrases Stuart Hurlbert's first error of concern and discusses replication as a check on stochastic events beyond natural variation.Less
Deborah Mayo (1996) has reinterpreted classic frequentist statistics into a much more general framework that she calls error statistics to indicate the continuing centrality and importance of error probabilities and error-probabilistic reasoning in testing hypotheses. Her generalization of statistical reasoning above and beyond any one statistical test provides a consistent and coherent approach to testing and assessing both quantitative and qualitative evidence and hence can be directly applied to whole-ecosystem experiments. This chapter argues that understanding the types of errors that replication controls allows for better design and interpretation of unreplicated and semi-replicated whole-ecosystem experiments. It begins by clarifying the meaning of three common concepts used in debates about what can and cannot be learned from whole-ecosystem manipulations: replication, BACI design, and pseudoreplication. It then rephrases Stuart Hurlbert's first error of concern and discusses replication as a check on stochastic events beyond natural variation.