*Glen Van Brummelen*

- Published in print:
- 2017
- Published Online:
- May 2018
- ISBN:
- 9780691175997
- eISBN:
- 9781400844807
- Item type:
- chapter

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691175997.003.0007
- Subject:
- Mathematics, History of Mathematics

This chapter explains how to find the area of an angle or polyhedron. It begins with a discussion of how to determine the area of a spherical triangle or polygon. The formula for the area of a ...
More

This chapter explains how to find the area of an angle or polyhedron. It begins with a discussion of how to determine the area of a spherical triangle or polygon. The formula for the area of a spherical triangle is named after Albert Girard, a French mathematician who developed a theorem on the areas of spherical triangles, found in his Invention nouvelle. The chapter goes on to consider Euler's polyhedral formula, named after the eighteenth-century mathematician Leonhard Euler, and the geometry of a regular polyhedron. Finally, it describes an approach to finding the proportion of the volume of the unit sphere that the various regular polyhedra occupy.Less

This chapter explains how to find the area of an angle or polyhedron. It begins with a discussion of how to determine the area of a spherical triangle or polygon. The formula for the area of a spherical triangle is named after Albert Girard, a French mathematician who developed a theorem on the areas of spherical triangles, found in his *Invention nouvelle*. The chapter goes on to consider Euler's polyhedral formula, named after the eighteenth-century mathematician Leonhard Euler, and the geometry of a regular polyhedron. Finally, it describes an approach to finding the proportion of the volume of the unit sphere that the various regular polyhedra occupy.

*Robin Wilson and John J. Watkins (eds)*

- Published in print:
- 2013
- Published Online:
- September 2013
- ISBN:
- 9780199656592
- eISBN:
- 9780191748059
- Item type:
- book

- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199656592.001.0001
- Subject:
- Mathematics, Combinatorics / Graph Theory / Discrete Mathematics, History of Mathematics

The history of mathematics is a well-studied and vibrant area of research, with books and scholarly articles published on various aspects of the subject. Yet, the history of combinatorics seems to ...
More

The history of mathematics is a well-studied and vibrant area of research, with books and scholarly articles published on various aspects of the subject. Yet, the history of combinatorics seems to have been largely overlooked. This book goes some way to redress this and serves two main purposes: it constitutes the first book-length survey of the history of combinatorics, and it assembles, for the first time in a single source, researches on the history of combinatorics that would otherwise be inaccessible to the general reader. Individual chapters have been contributed by sixteen experts. The book opens with an introduction to two thousand years of combinatorics. This is followed by seven chapters on early combinatorics, leading from Indian and Chinese writings on permutations to late-Renaissance publications on the arithmetical triangle. The next seven chapters trace the subsequent story, from Euler’s contributions to such wide-ranging topics as partitions, polyhedra, and latin squares to the 20th-century advances in combinatorial set theory, enumeration, and graph theory. The book concludes with some combinatorial reflections.Less

The history of mathematics is a well-studied and vibrant area of research, with books and scholarly articles published on various aspects of the subject. Yet, the history of combinatorics seems to have been largely overlooked. This book goes some way to redress this and serves two main purposes: it constitutes the first book-length survey of the history of combinatorics, and it assembles, for the first time in a single source, researches on the history of combinatorics that would otherwise be inaccessible to the general reader. Individual chapters have been contributed by sixteen experts. The book opens with an introduction to two thousand years of combinatorics. This is followed by seven chapters on early combinatorics, leading from Indian and Chinese writings on permutations to late-Renaissance publications on the arithmetical triangle. The next seven chapters trace the subsequent story, from Euler’s contributions to such wide-ranging topics as partitions, polyhedra, and latin squares to the 20th-century advances in combinatorial set theory, enumeration, and graph theory. The book concludes with some combinatorial reflections.