Andrew J. Connolly, Jacob T. VanderPlas, Alexander Gray, Andrew J. Connolly, Jacob T. VanderPlas, and Alexander Gray
- Published in print:
- 2014
- Published Online:
- October 2017
- ISBN:
- 9780691151687
- eISBN:
- 9781400848911
- Item type:
- chapter
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691151687.003.0008
- Subject:
- Physics, Particle Physics / Astrophysics / Cosmology
Regression is a special case of the general model fitting and selection procedures discussed in chapters 4 and 5. It can be defined as the relation between a dependent variable, y, and a set of ...
More
Regression is a special case of the general model fitting and selection procedures discussed in chapters 4 and 5. It can be defined as the relation between a dependent variable, y, and a set of independent variables, x, that describes the expectation value of y given x: E [y¦x]. The purpose of obtaining a “best-fit” model ranges from scientific interest in the values of model parameters (e.g., the properties of dark energy, or of a newly discovered planet) to the predictive power of the resulting model (e.g., predicting solar activity). This chapter starts with a general formulation for regression, list various simplified cases, and then discusses methods that can be used to address them, such as regression for linear models, kernel regression, robust regression and nonlinear regression.Less
Regression is a special case of the general model fitting and selection procedures discussed in chapters 4 and 5. It can be defined as the relation between a dependent variable, y, and a set of independent variables, x, that describes the expectation value of y given x: E [y¦x]. The purpose of obtaining a “best-fit” model ranges from scientific interest in the values of model parameters (e.g., the properties of dark energy, or of a newly discovered planet) to the predictive power of the resulting model (e.g., predicting solar activity). This chapter starts with a general formulation for regression, list various simplified cases, and then discusses methods that can be used to address them, such as regression for linear models, kernel regression, robust regression and nonlinear regression.