*LARS DøVLING ANDERSEN*

- Published in print:
- 2013
- Published Online:
- September 2013
- ISBN:
- 9780199656592
- eISBN:
- 9780191748059
- Item type:
- chapter

- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199656592.003.0012
- Subject:
- Mathematics, Combinatorics / Graph Theory / Discrete Mathematics, History of Mathematics

A latin square of order n is an n × n array with entries from a set of n symbols, arranged in such a way that each symbol appears exactly once in each row and exactly once in each column. From this ...
More

A latin square of order n is an n × n array with entries from a set of n symbols, arranged in such a way that each symbol appears exactly once in each row and exactly once in each column. From this simple starting point, the theory of latin squares has developed into an interesting discipline in its own right, as well as an important tool in design theory in general.Less

A latin square of order *n* is an *n* × *n* array with entries from a set of *n* symbols, arranged in such a way that each symbol appears exactly once in each row and exactly once in each column. From this simple starting point, the theory of latin squares has developed into an interesting discipline in its own right, as well as an important tool in design theory in general.

*Maureen T. Carroll and Steven T. Dougherty*

- Published in print:
- 2015
- Published Online:
- October 2017
- ISBN:
- 9780691164038
- eISBN:
- 9781400881338
- Item type:
- chapter

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691164038.003.0013
- Subject:
- Mathematics, History of Mathematics

This chapter introduces a new game of tic-tac-toe that fits squarely within the body of work inspired by mathematician Leonhard Euler's findings on the so-called “Graeco-Latin squares” and the ...
More

This chapter introduces a new game of tic-tac-toe that fits squarely within the body of work inspired by mathematician Leonhard Euler's findings on the so-called “Graeco-Latin squares” and the surprisingly interesting problem of arranging thirty-six officers of six different ranks and regiments. In his 1782 paper on the subject, Euler begins with the thirty-six-officer problem and ends with a conjecture about the possible sizes of Graeco-Latin squares. The chapter first explains the rules for a game based on Euler's work, and then analyzes it from a game-theoretic perspective to determine winning and drawing strategies. Along the way, the chapter explains Euler's connection to the story.Less

This chapter introduces a new game of tic-tac-toe that fits squarely within the body of work inspired by mathematician Leonhard Euler's findings on the so-called “Graeco-Latin squares” and the surprisingly interesting problem of arranging thirty-six officers of six different ranks and regiments. In his 1782 paper on the subject, Euler begins with the thirty-six-officer problem and ends with a conjecture about the possible sizes of Graeco-Latin squares. The chapter first explains the rules for a game based on Euler's work, and then analyzes it from a game-theoretic perspective to determine winning and drawing strategies. Along the way, the chapter explains Euler's connection to the story.

*Robin Wilson and John J. Watkins (eds)*

- Published in print:
- 2013
- Published Online:
- September 2013
- ISBN:
- 9780199656592
- eISBN:
- 9780191748059
- Item type:
- book

- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199656592.001.0001
- Subject:
- Mathematics, Combinatorics / Graph Theory / Discrete Mathematics, History of Mathematics

The history of mathematics is a well-studied and vibrant area of research, with books and scholarly articles published on various aspects of the subject. Yet, the history of combinatorics seems to ...
More

The history of mathematics is a well-studied and vibrant area of research, with books and scholarly articles published on various aspects of the subject. Yet, the history of combinatorics seems to have been largely overlooked. This book goes some way to redress this and serves two main purposes: it constitutes the first book-length survey of the history of combinatorics, and it assembles, for the first time in a single source, researches on the history of combinatorics that would otherwise be inaccessible to the general reader. Individual chapters have been contributed by sixteen experts. The book opens with an introduction to two thousand years of combinatorics. This is followed by seven chapters on early combinatorics, leading from Indian and Chinese writings on permutations to late-Renaissance publications on the arithmetical triangle. The next seven chapters trace the subsequent story, from Euler’s contributions to such wide-ranging topics as partitions, polyhedra, and latin squares to the 20th-century advances in combinatorial set theory, enumeration, and graph theory. The book concludes with some combinatorial reflections.Less

The history of mathematics is a well-studied and vibrant area of research, with books and scholarly articles published on various aspects of the subject. Yet, the history of combinatorics seems to have been largely overlooked. This book goes some way to redress this and serves two main purposes: it constitutes the first book-length survey of the history of combinatorics, and it assembles, for the first time in a single source, researches on the history of combinatorics that would otherwise be inaccessible to the general reader. Individual chapters have been contributed by sixteen experts. The book opens with an introduction to two thousand years of combinatorics. This is followed by seven chapters on early combinatorics, leading from Indian and Chinese writings on permutations to late-Renaissance publications on the arithmetical triangle. The next seven chapters trace the subsequent story, from Euler’s contributions to such wide-ranging topics as partitions, polyhedra, and latin squares to the 20th-century advances in combinatorial set theory, enumeration, and graph theory. The book concludes with some combinatorial reflections.