Peter Mann
- Published in print:
- 2018
- Published Online:
- August 2018
- ISBN:
- 9780198822370
- eISBN:
- 9780191861253
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780198822370.003.0008
- Subject:
- Physics, Theoretical, Computational, and Statistical Physics
This chapter builds on the previous two chapters to tackle constrained systems, using Lagrangian mechanics and constrained variations. The first section deals with holonomic constraint equations ...
More
This chapter builds on the previous two chapters to tackle constrained systems, using Lagrangian mechanics and constrained variations. The first section deals with holonomic constraint equations using Lagrange multipliers; these can be used to reduce the number of coordinates until a linearly independent minimal set is obtained that describes a constraint surface within configuration space, so that Lagrange equations can be set up and solved. Motion is understood to be confined to a constraint submanifold. The variational formulation of non-holonomic constraints is then discussed to derive the vakonomic formulation. These erroneous equations are then compared to the central Lagrange equation, and the precise nature of the variations used in each formulation is investigated. The vakonomic equations are then presented in their Suslov form (Suslov–vakonomic form) in an attempt to reconcile the two approaches. In addition, the structure of biological membranes is framed as a constrained optimisation problem.Less
This chapter builds on the previous two chapters to tackle constrained systems, using Lagrangian mechanics and constrained variations. The first section deals with holonomic constraint equations using Lagrange multipliers; these can be used to reduce the number of coordinates until a linearly independent minimal set is obtained that describes a constraint surface within configuration space, so that Lagrange equations can be set up and solved. Motion is understood to be confined to a constraint submanifold. The variational formulation of non-holonomic constraints is then discussed to derive the vakonomic formulation. These erroneous equations are then compared to the central Lagrange equation, and the precise nature of the variations used in each formulation is investigated. The vakonomic equations are then presented in their Suslov form (Suslov–vakonomic form) in an attempt to reconcile the two approaches. In addition, the structure of biological membranes is framed as a constrained optimisation problem.