Bas Edixhoven and Jean-Marc Couveignes (eds)
- Published in print:
- 2011
- Published Online:
- October 2017
- ISBN:
- 9780691142012
- eISBN:
- 9781400839001
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691142012.001.0001
- Subject:
- Mathematics, Number Theory
Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's ...
More
Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The book begins with a concise and concrete introduction that makes it accessible to readers without an extensive background in arithmetic geometry, and it includes a chapter that describes actual computations.Less
Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The book begins with a concise and concrete introduction that makes it accessible to readers without an extensive background in arithmetic geometry, and it includes a chapter that describes actual computations.
Nicholas M. Katz
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153308
- eISBN:
- 9781400842704
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153308.001.0001
- Subject:
- Mathematics, Number Theory
This book explores an important aspect of number theory—the theory of exponential sums over finite fields and their Mellin transforms—from a new, categorical point of view. The book presents ...
More
This book explores an important aspect of number theory—the theory of exponential sums over finite fields and their Mellin transforms—from a new, categorical point of view. The book presents fundamentally important results and a plethora of examples, opening up new directions in the subject. The finite-field Mellin transform (of a function on the multiplicative group of a finite field) is defined by summing that function against variable multiplicative characters. The basic question considered in the book is how the values of the Mellin transform are distributed (in a probabilistic sense), in cases where the input function is suitably algebro-geometric. This question is answered by the book's main theorem, using a mixture of geometric, categorical, and group-theoretic methods. By providing a new framework for studying Mellin transforms over finite fields, this book opens up a new way for researchers to further explore the subject.Less
This book explores an important aspect of number theory—the theory of exponential sums over finite fields and their Mellin transforms—from a new, categorical point of view. The book presents fundamentally important results and a plethora of examples, opening up new directions in the subject. The finite-field Mellin transform (of a function on the multiplicative group of a finite field) is defined by summing that function against variable multiplicative characters. The basic question considered in the book is how the values of the Mellin transform are distributed (in a probabilistic sense), in cases where the input function is suitably algebro-geometric. This question is answered by the book's main theorem, using a mixture of geometric, categorical, and group-theoretic methods. By providing a new framework for studying Mellin transforms over finite fields, this book opens up a new way for researchers to further explore the subject.
Anantharam Raghuram and Günter Harder
- Published in print:
- 2019
- Published Online:
- September 2020
- ISBN:
- 9780691197890
- eISBN:
- 9780691197937
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691197890.001.0001
- Subject:
- Mathematics, Number Theory
This book studies the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system attached to a finite-dimensional algebraic representation of ...
More
This book studies the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system attached to a finite-dimensional algebraic representation of GL(N). The image of the global cohomology in the cohomology of the Borel–Serre boundary is called Eisenstein cohomology, since at a transcendental level the cohomology classes may be described in terms of Eisenstein series and induced representations. However, because the groups are sheaf-theoretically defined, one can control their rationality and even integrality properties. A celebrated theorem by Langlands describes the constant term of an Eisenstein series in terms of automorphic L-functions. A cohomological interpretation of this theorem in terms of maps in Eisenstein cohomology allows the authors to study the rationality properties of the special values of Rankin–Selberg L-functions for GL(n) × GL(m), where n + m = N. The book carries through the entire program with an eye toward generalizations. The book should be of interest to advanced graduate students and researchers interested in number theory, automorphic forms, representation theory, and the cohomology of arithmetic groups.Less
This book studies the cohomology of locally symmetric spaces for GL(N) where the cohomology groups are with coefficients in a local system attached to a finite-dimensional algebraic representation of GL(N). The image of the global cohomology in the cohomology of the Borel–Serre boundary is called Eisenstein cohomology, since at a transcendental level the cohomology classes may be described in terms of Eisenstein series and induced representations. However, because the groups are sheaf-theoretically defined, one can control their rationality and even integrality properties. A celebrated theorem by Langlands describes the constant term of an Eisenstein series in terms of automorphic L-functions. A cohomological interpretation of this theorem in terms of maps in Eisenstein cohomology allows the authors to study the rationality properties of the special values of Rankin–Selberg L-functions for GL(n) × GL(m), where n + m = N. The book carries through the entire program with an eye toward generalizations. The book should be of interest to advanced graduate students and researchers interested in number theory, automorphic forms, representation theory, and the cohomology of arithmetic groups.
Xinyi Yuan, Shou-wu Zhang, and Wei Zhang
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691155913
- eISBN:
- 9781400845644
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691155913.001.0001
- Subject:
- Mathematics, Number Theory
This comprehensive account of the Gross–Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The ...
More
This comprehensive account of the Gross–Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross–Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross–Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross–Zagier formula is reduced to local formulas. This book will be of great use to students wishing to enter this area and to those already working in it.Less
This comprehensive account of the Gross–Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross–Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross–Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross–Zagier formula is reduced to local formulas. This book will be of great use to students wishing to enter this area and to those already working in it.