Alfonso Sorrentino
- Published in print:
- 2015
- Published Online:
- October 2017
- ISBN:
- 9780691164502
- eISBN:
- 9781400866618
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691164502.001.0001
- Subject:
- Mathematics, Applied Mathematics
John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical ...
More
John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach—known as Aubry–Mather theory—singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather's theory, and can serve as an interdisciplinary bridge for researchers and students from different fields seeking to acquaint themselves with the topic. Starting with the mathematical background from which Mather's theory was born, the book first focuses on the core questions the theory aims to answer—notably the destiny of broken invariant KAM tori and the onset of chaos—and describes how it can be viewed as a natural counterpart of KAM theory. The book achieves this by guiding readers through a detailed illustrative example, which also provides the basis for introducing the main ideas and concepts of the general theory. It then describes the whole theory and its subsequent developments and applications in their full generality.Less
John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach—known as Aubry–Mather theory—singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather's theory, and can serve as an interdisciplinary bridge for researchers and students from different fields seeking to acquaint themselves with the topic. Starting with the mathematical background from which Mather's theory was born, the book first focuses on the core questions the theory aims to answer—notably the destiny of broken invariant KAM tori and the onset of chaos—and describes how it can be viewed as a natural counterpart of KAM theory. The book achieves this by guiding readers through a detailed illustrative example, which also provides the basis for introducing the main ideas and concepts of the general theory. It then describes the whole theory and its subsequent developments and applications in their full generality.
Charles Fefferman, Alexandru D. Ionescu, D.H. Phong, and Stephen Wainger
- Published in print:
- 2014
- Published Online:
- October 2017
- ISBN:
- 9780691159416
- eISBN:
- 9781400848935
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691159416.001.0001
- Subject:
- Mathematics, Numerical Analysis
Princeton University's Elias Stein was the first mathematician to see the profound interconnections that tie classical Fourier analysis to several complex variables and representation theory. His ...
More
Princeton University's Elias Stein was the first mathematician to see the profound interconnections that tie classical Fourier analysis to several complex variables and representation theory. His fundamental contributions include the Kunze–Stein phenomenon, the construction of new representations, the Stein interpolation theorem, the idea of a restriction theorem for the Fourier transform, and the theory of Hp Spaces in several variables. Through his great discoveries, through books that have set the highest standard for mathematical exposition, and through his influence on his many collaborators and students, Stein has changed mathematics. Drawing inspiration from Stein's contributions to harmonic analysis and related topics, this book gathers papers from internationally renowned mathematicians, many of whom have been Stein's students. The book also includes expository papers on Stein's work and its influence.Less
Princeton University's Elias Stein was the first mathematician to see the profound interconnections that tie classical Fourier analysis to several complex variables and representation theory. His fundamental contributions include the Kunze–Stein phenomenon, the construction of new representations, the Stein interpolation theorem, the idea of a restriction theorem for the Fourier transform, and the theory of Hp Spaces in several variables. Through his great discoveries, through books that have set the highest standard for mathematical exposition, and through his influence on his many collaborators and students, Stein has changed mathematics. Drawing inspiration from Stein's contributions to harmonic analysis and related topics, this book gathers papers from internationally renowned mathematicians, many of whom have been Stein's students. The book also includes expository papers on Stein's work and its influence.
Joshua M. Epstein
- Published in print:
- 2014
- Published Online:
- October 2017
- ISBN:
- 9780691158884
- eISBN:
- 9781400848256
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691158884.001.0001
- Subject:
- Mathematics, Applied Mathematics
This book introduces a new theoretical entity: Agent_Zero. This software individual, or “agent,” is endowed with distinct emotional/affective, cognitive/deliberative, and social modules. Grounded in ...
More
This book introduces a new theoretical entity: Agent_Zero. This software individual, or “agent,” is endowed with distinct emotional/affective, cognitive/deliberative, and social modules. Grounded in contemporary neuroscience, these internal components interact to generate observed, often far-from-rational, individual behavior. When multiple agents of this new type move and interact spatially, they collectively generate an astonishing range of dynamics spanning the fields of social conflict, psychology, public health, law, network science, and economics. The book weaves a computational tapestry with threads from Plato, David Hume, Charles Darwin, Ivan Pavlov, Adam Smith, Leo Tolstoy, Karl Marx, William James, and Fyodor Dostoevsky, among others. This transformative synthesis of social philosophy, cognitive neuroscience, and agent-based modeling will fascinate scholars and students of every stripe. Computer programs are provided in the book or available online. This book is a signal departure in what it includes (e.g., a new synthesis of neurally grounded internal modules), what it eschews (e.g., standard behavioral imitation), the phenomena it generates (from genocide to financial panic), and the modeling arsenal it offers the scientific community. For generative social science, this book presents a ground-breaking vision and the tools to realize it.Less
This book introduces a new theoretical entity: Agent_Zero. This software individual, or “agent,” is endowed with distinct emotional/affective, cognitive/deliberative, and social modules. Grounded in contemporary neuroscience, these internal components interact to generate observed, often far-from-rational, individual behavior. When multiple agents of this new type move and interact spatially, they collectively generate an astonishing range of dynamics spanning the fields of social conflict, psychology, public health, law, network science, and economics. The book weaves a computational tapestry with threads from Plato, David Hume, Charles Darwin, Ivan Pavlov, Adam Smith, Leo Tolstoy, Karl Marx, William James, and Fyodor Dostoevsky, among others. This transformative synthesis of social philosophy, cognitive neuroscience, and agent-based modeling will fascinate scholars and students of every stripe. Computer programs are provided in the book or available online. This book is a signal departure in what it includes (e.g., a new synthesis of neurally grounded internal modules), what it eschews (e.g., standard behavioral imitation), the phenomena it generates (from genocide to financial panic), and the modeling arsenal it offers the scientific community. For generative social science, this book presents a ground-breaking vision and the tools to realize it.
B. Jack Copeland (ed.)
- Published in print:
- 2005
- Published Online:
- January 2008
- ISBN:
- 9780198565932
- eISBN:
- 9780191714016
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780198565932.001.0001
- Subject:
- Mathematics, History of Mathematics
The mathematical genius Alan Turing (1912-1954) was one of the greatest scientists and thinkers of the 20th century. Now well known for his crucial wartime role in breaking the ENIGMA code, he was ...
More
The mathematical genius Alan Turing (1912-1954) was one of the greatest scientists and thinkers of the 20th century. Now well known for his crucial wartime role in breaking the ENIGMA code, he was the first to conceive of the fundamental principle of the modern computer — the idea of controlling a computing machine's operations by means of coded instructions, stored in the machine's ‘memory’. In 1945, Turing drew up his revolutionary design for an electronic computing machine — his Automatic Computing Engine (‘ACE’). A pilot model of the ACE ran its first programme in 1950 and the production version, the ‘DEUCE’, went on to become a cornerstone of the fledgling British computer industry. The first ‘personal’ computer was based on Turing's ACE. This book describes Turing's struggle to build the modern computer. It contains first-hand accounts by Turing and by the pioneers of computing who worked with him. The book describes the hardware and software of the ACE and contains chapters describing Turing's path-breaking research in the fields of Artificial Intelligence (AI) and Artificial Life (A-Life).Less
The mathematical genius Alan Turing (1912-1954) was one of the greatest scientists and thinkers of the 20th century. Now well known for his crucial wartime role in breaking the ENIGMA code, he was the first to conceive of the fundamental principle of the modern computer — the idea of controlling a computing machine's operations by means of coded instructions, stored in the machine's ‘memory’. In 1945, Turing drew up his revolutionary design for an electronic computing machine — his Automatic Computing Engine (‘ACE’). A pilot model of the ACE ran its first programme in 1950 and the production version, the ‘DEUCE’, went on to become a cornerstone of the fledgling British computer industry. The first ‘personal’ computer was based on Turing's ACE. This book describes Turing's struggle to build the modern computer. It contains first-hand accounts by Turing and by the pioneers of computing who worked with him. The book describes the hardware and software of the ACE and contains chapters describing Turing's path-breaking research in the fields of Artificial Intelligence (AI) and Artificial Life (A-Life).
Andrew Ranicki
- Published in print:
- 2002
- Published Online:
- September 2007
- ISBN:
- 9780198509240
- eISBN:
- 9780191708725
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780198509240.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book is an introduction to surgery theory, the standard algebraic topology classification method for manifolds of dimension greater than 4. It is aimed at those who have already been on a basic ...
More
This book is an introduction to surgery theory, the standard algebraic topology classification method for manifolds of dimension greater than 4. It is aimed at those who have already been on a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology. Surgery theory expresses the manifold structure set in terms of the topological K-theory of vector bundles and the algebraic L-theory of quadratic forms. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.Less
This book is an introduction to surgery theory, the standard algebraic topology classification method for manifolds of dimension greater than 4. It is aimed at those who have already been on a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology. Surgery theory expresses the manifold structure set in terms of the topological K-theory of vector bundles and the algebraic L-theory of quadratic forms. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
Ercüment H. Ortaçgil
- Published in print:
- 2018
- Published Online:
- September 2018
- ISBN:
- 9780198821656
- eISBN:
- 9780191860959
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780198821656.001.0001
- Subject:
- Mathematics, Pure Mathematics
This book is about the foundations of geometric symmetry, namely, Lie groups and differential geometry. Although this is a classical subject about which hundreds of books have been written, this book ...
More
This book is about the foundations of geometric symmetry, namely, Lie groups and differential geometry. Although this is a classical subject about which hundreds of books have been written, this book takes a new and innovative approach. The main idea is to replace the Maurer–Cartan form with absolute parallelism and its curvature. Unlike the classical approach, where the model is fixed beforehand by the Maurer–Cartan form, this new approach is model-free, and also revisits the foundational concepts of differential geometry, such as covariant differentiation, from a different perspective.Less
This book is about the foundations of geometric symmetry, namely, Lie groups and differential geometry. Although this is a classical subject about which hundreds of books have been written, this book takes a new and innovative approach. The main idea is to replace the Maurer–Cartan form with absolute parallelism and its curvature. Unlike the classical approach, where the model is fixed beforehand by the Maurer–Cartan form, this new approach is model-free, and also revisits the foundational concepts of differential geometry, such as covariant differentiation, from a different perspective.
Charles Fefferman and C. Robin Graham
- Published in print:
- 2011
- Published Online:
- October 2017
- ISBN:
- 9780691153131
- eISBN:
- 9781400840588
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153131.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient ...
More
This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics. The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincaré metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincaré metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.Less
This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics. The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincaré metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincaré metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.
Peter Mörters, Roger Moser, Mathew Penrose, Hartmut Schwetlick, and Johannes Zimmer (eds)
- Published in print:
- 2008
- Published Online:
- September 2008
- ISBN:
- 9780199239252
- eISBN:
- 9780191716911
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199239252.001.0001
- Subject:
- Mathematics, Probability / Statistics, Analysis
There has been a significant increase recently in activities on the interface between applied analysis and probability theory. With the potential of a combined approach to the study of various ...
More
There has been a significant increase recently in activities on the interface between applied analysis and probability theory. With the potential of a combined approach to the study of various physical systems in view, this book is a collection of topical survey articles by leading researchers in both fields, working on the mathematical description of growth phenomena in the broadest sense. The main aim of the book is to foster interaction between researchers in probability and analysis, and to inspire joint efforts to attack important physical problems. Mathematical methods discussed in the book comprise large deviation theory, lace expansion, harmonic analysis, multi-scale techniques, and homogenization of partial differential equations. Models based on the physics of individual particles are discussed alongside models based on the continuum description of large collections of particles, and the mathematical theories are used to describe physical phenomena such as droplet formation, Bose–Einstein condensation, Anderson localization, Ostwald ripening, or the formation of the early universe.Less
There has been a significant increase recently in activities on the interface between applied analysis and probability theory. With the potential of a combined approach to the study of various physical systems in view, this book is a collection of topical survey articles by leading researchers in both fields, working on the mathematical description of growth phenomena in the broadest sense. The main aim of the book is to foster interaction between researchers in probability and analysis, and to inspire joint efforts to attack important physical problems. Mathematical methods discussed in the book comprise large deviation theory, lace expansion, harmonic analysis, multi-scale techniques, and homogenization of partial differential equations. Models based on the physics of individual particles are discussed alongside models based on the continuum description of large collections of particles, and the mathematical theories are used to describe physical phenomena such as droplet formation, Bose–Einstein condensation, Anderson localization, Ostwald ripening, or the formation of the early universe.
Bijan Mohammadi and Olivier Pironneau
- Published in print:
- 2009
- Published Online:
- February 2010
- ISBN:
- 9780199546909
- eISBN:
- 9780191720482
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199546909.001.0001
- Subject:
- Mathematics, Mathematical Physics
The fields of computational fluid dynamics (CFD) and optimal shape design (OSD) have received considerable attention in the recent past, and are of practical importance for many engineering ...
More
The fields of computational fluid dynamics (CFD) and optimal shape design (OSD) have received considerable attention in the recent past, and are of practical importance for many engineering applications. This book deals with shape optimization problems for fluids, with the equations needed for their understanding (Euler and Navier Strokes, but also those for microfluids) and with the numerical simulation of these problems. It presents the state of the art in shape optimization for an extended range of applications involving fluid flows. Automatic differentiation, approximate gradients, unstructured mesh adaptation, multi-model configurations, and time-dependent problems are introduced, and their implementation into the industrial environments of aerospace and automobile equipment industry explained and illustrated. With the increases in the power of computers in industry since the first edition of this book, methods which were previously unfeasible have begun giving results, namely evolutionary algorithms, topological optimization methods, and level set algorithms. In this edition, these methods have been treated in separate chapters, but the book remains primarily one on differential shape optimization.Less
The fields of computational fluid dynamics (CFD) and optimal shape design (OSD) have received considerable attention in the recent past, and are of practical importance for many engineering applications. This book deals with shape optimization problems for fluids, with the equations needed for their understanding (Euler and Navier Strokes, but also those for microfluids) and with the numerical simulation of these problems. It presents the state of the art in shape optimization for an extended range of applications involving fluid flows. Automatic differentiation, approximate gradients, unstructured mesh adaptation, multi-model configurations, and time-dependent problems are introduced, and their implementation into the industrial environments of aerospace and automobile equipment industry explained and illustrated. With the increases in the power of computers in industry since the first edition of this book, methods which were previously unfeasible have begun giving results, namely evolutionary algorithms, topological optimization methods, and level set algorithms. In this edition, these methods have been treated in separate chapters, but the book remains primarily one on differential shape optimization.
Gisbert Wüstholz and Clemens Fuchs (eds)
- Published in print:
- 2019
- Published Online:
- May 2020
- ISBN:
- 9780691193779
- eISBN:
- 9780691197548
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691193779.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures—which were delivered in celebration of the ...
More
This book presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures—which were delivered in celebration of the tenth anniversary of the annual summer workshops in Alpbach, Austria—provide an introduction to high-level research on three topics: Shimura varieties, hyperelliptic continued fractions and generalized Jacobians, and Faltings heights and L-functions. The book consists of notes, written by young researchers, on three sets of lectures or minicourses given at Alpbach. The first course contains recent results dealing with the local Langlands conjecture. The fundamental question is whether for a given datum there exists a so-called local Shimura variety. In some cases, they exist in the category of rigid analytic spaces; in others, one has to use Scholze's perfectoid spaces. The second course addresses the famous Pell equation—not in the classical setting but rather with the so-called polynomial Pell equation, where the integers are replaced by polynomials in one variable with complex coefficients, which leads to the study of hyperelliptic continued fractions and generalized Jacobians. The third course originates in the Chowla–Selberg formula and relates values of the L-function for elliptic curves with the height of Heegner points on the curves. It proves the Gross–Zagier formula on Shimura curves and verifies the Colmez conjecture on average.Less
This book presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures—which were delivered in celebration of the tenth anniversary of the annual summer workshops in Alpbach, Austria—provide an introduction to high-level research on three topics: Shimura varieties, hyperelliptic continued fractions and generalized Jacobians, and Faltings heights and L-functions. The book consists of notes, written by young researchers, on three sets of lectures or minicourses given at Alpbach. The first course contains recent results dealing with the local Langlands conjecture. The fundamental question is whether for a given datum there exists a so-called local Shimura variety. In some cases, they exist in the category of rigid analytic spaces; in others, one has to use Scholze's perfectoid spaces. The second course addresses the famous Pell equation—not in the classical setting but rather with the so-called polynomial Pell equation, where the integers are replaced by polynomials in one variable with complex coefficients, which leads to the study of hyperelliptic continued fractions and generalized Jacobians. The third course originates in the Chowla–Selberg formula and relates values of the L-function for elliptic curves with the height of Heegner points on the curves. It proves the Gross–Zagier formula on Shimura curves and verifies the Colmez conjecture on average.
Kai-Wen Lan
- Published in print:
- 2013
- Published Online:
- October 2017
- ISBN:
- 9780691156545
- eISBN:
- 9781400846016
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691156545.001.0001
- Subject:
- Mathematics, Geometry / Topology
By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical ...
More
By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary, which this book explains in detail. Through the discussion, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai). The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties.Less
By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary, which this book explains in detail. Through the discussion, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai). The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties.
Matthias Aschenbrenner, Lou van den Dries, and Joris van der Hoeven
- Published in print:
- 2017
- Published Online:
- October 2017
- ISBN:
- 9780691175423
- eISBN:
- 9781400885411
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691175423.001.0001
- Subject:
- Mathematics, Computational Mathematics / Optimization
Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a ...
More
Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton–Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.Less
Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton–Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.
Jon Williamson
- Published in print:
- 2004
- Published Online:
- September 2007
- ISBN:
- 9780198530794
- eISBN:
- 9780191712982
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780198530794.001.0001
- Subject:
- Mathematics, Logic / Computer Science / Mathematical Philosophy
This book provides an introduction to, and analysis of, the use of Bayesian nets in causal modelling. It puts forward new conceptual foundations for causal network modelling: The book argues that ...
More
This book provides an introduction to, and analysis of, the use of Bayesian nets in causal modelling. It puts forward new conceptual foundations for causal network modelling: The book argues that probability and causality need to be interpreted as epistemic notions in order for the key assumptions behind causal models to hold. Under the epistemic view, probability and causality are understood in terms of the beliefs an agent ought to adopt. The book develops an objective Bayesian notion of probability and a corresponding epistemic theory of causality. This yields a general framework for causal modelling, which is extended to cope with recursive causal relations, logically complex beliefs and changes in an agent's language.Less
This book provides an introduction to, and analysis of, the use of Bayesian nets in causal modelling. It puts forward new conceptual foundations for causal network modelling: The book argues that probability and causality need to be interpreted as epistemic notions in order for the key assumptions behind causal models to hold. Under the epistemic view, probability and causality are understood in terms of the beliefs an agent ought to adopt. The book develops an objective Bayesian notion of probability and a corresponding epistemic theory of causality. This yields a general framework for causal modelling, which is extended to cope with recursive causal relations, logically complex beliefs and changes in an agent's language.
Ludwig Fahrmeir and Thomas Kneib
- Published in print:
- 2011
- Published Online:
- September 2011
- ISBN:
- 9780199533022
- eISBN:
- 9780191728501
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199533022.001.0001
- Subject:
- Mathematics, Probability / Statistics, Biostatistics
Several recent advances in smoothing and semiparametric regression are presented in this book from a unifying, Bayesian perspective. Simulation-based full Bayesian Markov chain Monte Carlo (MCMC) ...
More
Several recent advances in smoothing and semiparametric regression are presented in this book from a unifying, Bayesian perspective. Simulation-based full Bayesian Markov chain Monte Carlo (MCMC) inference, as well as empirical Bayes procedures closely related to penalized likelihood estimation and mixed models, are considered here. Throughout, the focus is on semiparametric regression and smoothing based on basis expansions of unknown functions and effects in combination with smoothness priors for the basis coefficients. Beginning with a review of basic methods for smoothing and mixed models, longitudinal data, spatial data, and event history data are treated in separate chapters. Worked examples from various fields such as forestry, development economics, medicine, and marketing are used to illustrate the statistical methods covered in this book. Most of these examples have been analysed using implementations in the Bayesian software, BayesX, and some with R Codes.Less
Several recent advances in smoothing and semiparametric regression are presented in this book from a unifying, Bayesian perspective. Simulation-based full Bayesian Markov chain Monte Carlo (MCMC) inference, as well as empirical Bayes procedures closely related to penalized likelihood estimation and mixed models, are considered here. Throughout, the focus is on semiparametric regression and smoothing based on basis expansions of unknown functions and effects in combination with smoothness priors for the basis coefficients. Beginning with a review of basic methods for smoothing and mixed models, longitudinal data, spatial data, and event history data are treated in separate chapters. Worked examples from various fields such as forestry, development economics, medicine, and marketing are used to illustrate the statistical methods covered in this book. Most of these examples have been analysed using implementations in the Bayesian software, BayesX, and some with R Codes.
José M. Bernardo, M. J. Bayarri, James O. Berger, A. P. Dawid, David Heckerman, Adrian F. M. Smith, and Mike West (eds)
- Published in print:
- 2011
- Published Online:
- January 2012
- ISBN:
- 9780199694587
- eISBN:
- 9780191731921
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199694587.001.0001
- Subject:
- Mathematics, Probability / Statistics
The Valencia International Meetings on Bayesian Statistics – established in 1979 and held every four years – have been the forum for a definitive overview of current concerns and activities in ...
More
The Valencia International Meetings on Bayesian Statistics – established in 1979 and held every four years – have been the forum for a definitive overview of current concerns and activities in Bayesian statistics. These are the edited Proceedings of the Ninth meeting, and contain the invited papers each followed by their discussion and a rejoinder by the author(s). In the tradition of the earlier editions, this encompasses an enormous range of theoretical and applied research, highlighting the breadth, vitality and impact of Bayesian thinking in interdisciplinary research across many fields as well as the corresponding growth and vitality of core theory and methodology. The Valencia 9 invited papers cover a broad range of topics, including foundational and core theoretical issues in statistics, the continued development of new and refined computational methods for complex Bayesian modelling, substantive applications of flexible Bayesian modelling, and new developments in the theory and methodology of graphical modelling. They also describe advances in methodology for specific applied fields, including financial econometrics and portfolio decision making, public policy applications for drug surveillance, studies in the physical and environmental sciences, astronomy and astrophysics, climate change studies, molecular biosciences, statistical genetics or stochastic dynamic networks in systems biology.Less
The Valencia International Meetings on Bayesian Statistics – established in 1979 and held every four years – have been the forum for a definitive overview of current concerns and activities in Bayesian statistics. These are the edited Proceedings of the Ninth meeting, and contain the invited papers each followed by their discussion and a rejoinder by the author(s). In the tradition of the earlier editions, this encompasses an enormous range of theoretical and applied research, highlighting the breadth, vitality and impact of Bayesian thinking in interdisciplinary research across many fields as well as the corresponding growth and vitality of core theory and methodology. The Valencia 9 invited papers cover a broad range of topics, including foundational and core theoretical issues in statistics, the continued development of new and refined computational methods for complex Bayesian modelling, substantive applications of flexible Bayesian modelling, and new developments in the theory and methodology of graphical modelling. They also describe advances in methodology for specific applied fields, including financial econometrics and portfolio decision making, public policy applications for drug surveillance, studies in the physical and environmental sciences, astronomy and astrophysics, climate change studies, molecular biosciences, statistical genetics or stochastic dynamic networks in systems biology.
Paul Damien, Petros Dellaportas, Nicholas G. Polson, and David A. Stephens (eds)
- Published in print:
- 2013
- Published Online:
- May 2013
- ISBN:
- 9780199695607
- eISBN:
- 9780191744167
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199695607.001.0001
- Subject:
- Mathematics, Probability / Statistics
The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances ...
More
The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This book travels on a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. The book honours the contributions of Sir Adrian F. M. Smith, one of the seminal Bayesian researchers, with his work on hierarchical models, sequential Monte Carlo, and Markov chain Monte Carlo and his mentoring of numerous graduate students.Less
The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This book travels on a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. The book honours the contributions of Sir Adrian F. M. Smith, one of the seminal Bayesian researchers, with his work on hierarchical models, sequential Monte Carlo, and Markov chain Monte Carlo and his mentoring of numerous graduate students.
Steven J. Miller (ed.)
- Published in print:
- 2015
- Published Online:
- October 2017
- ISBN:
- 9780691147611
- eISBN:
- 9781400866595
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691147611.001.0001
- Subject:
- Mathematics, Probability / Statistics
Benford's law states that the leading digits of many data sets are not uniformly distributed from one through nine, but rather exhibit a profound bias. This bias is evident in everything from ...
More
Benford's law states that the leading digits of many data sets are not uniformly distributed from one through nine, but rather exhibit a profound bias. This bias is evident in everything from electricity bills and street addresses to stock prices, population numbers, mortality rates, and the lengths of rivers. This book demonstrates the many useful techniques that arise from the law, showing how truly multidisciplinary it is, and encouraging collaboration. Beginning with the general theory, the chapters explain the prevalence of the bias, highlighting explanations for when systems should and should not follow Benford's law and how quickly such behavior sets in. The book goes on to discuss important applications in disciplines ranging from accounting and economics to psychology and the natural sciences. The book describes how Benford's law has been successfully used to expose fraud in elections, medical tests, tax filings, and financial reports. Additionally, numerous problems, background materials, and technical details are available online to help instructors create courses around the book. Emphasizing common challenges and techniques across the disciplines, this book shows how Benford's law can serve as a productive meeting ground for researchers and practitioners in diverse fields.Less
Benford's law states that the leading digits of many data sets are not uniformly distributed from one through nine, but rather exhibit a profound bias. This bias is evident in everything from electricity bills and street addresses to stock prices, population numbers, mortality rates, and the lengths of rivers. This book demonstrates the many useful techniques that arise from the law, showing how truly multidisciplinary it is, and encouraging collaboration. Beginning with the general theory, the chapters explain the prevalence of the bias, highlighting explanations for when systems should and should not follow Benford's law and how quickly such behavior sets in. The book goes on to discuss important applications in disciplines ranging from accounting and economics to psychology and the natural sciences. The book describes how Benford's law has been successfully used to expose fraud in elections, medical tests, tax filings, and financial reports. Additionally, numerous problems, background materials, and technical details are available online to help instructors create courses around the book. Emphasizing common challenges and techniques across the disciplines, this book shows how Benford's law can serve as a productive meeting ground for researchers and practitioners in diverse fields.
Peter Scholze and Jared Weinstein
- Published in print:
- 2020
- Published Online:
- January 2021
- ISBN:
- 9780691202082
- eISBN:
- 9780691202150
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202082.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book presents an important breakthrough in arithmetic geometry. In 2014, this book's author delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory ...
More
This book presents an important breakthrough in arithmetic geometry. In 2014, this book's author delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, the author introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. This book shows that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. The book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained.Less
This book presents an important breakthrough in arithmetic geometry. In 2014, this book's author delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, the author introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. This book shows that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. The book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained.
Ettore Casari
- Published in print:
- 2016
- Published Online:
- January 2017
- ISBN:
- 9780198788294
- eISBN:
- 9780191830228
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780198788294.001.0001
- Subject:
- Mathematics, Logic / Computer Science / Mathematical Philosophy
A starting point of Bolzano’s logical reflection was the conviction that among truths there is a connection, according to which some truths are grounds of others, and these in turn are consequences ...
More
A starting point of Bolzano’s logical reflection was the conviction that among truths there is a connection, according to which some truths are grounds of others, and these in turn are consequences of the former, and that such a connection is objective, i.e. subsisting independently of every cognitive activity of the subject. In the attempt to account for the distinction between subjective and objective levels of knowledge, Bolzano gradually gained the conviction that the reference of the subject to the object is mediated by a realm of entities without existence that, recalling the Stoic lectà, are here called ‘lectological’. Moreover, of the two main ways through which that reference takes place—psychic activity and linguistic activity—Bolzano favoured the first and traced back to it the problems of the second; i.e. he considered those intermediate entities first as possible content of psychic phenomena and only subordinately, on the basis of a complex theory of signs, as meanings of linguistic phenomena. This book follows this schema and treats, in great detail, first, lectological entities (ideas and propositions in themselves), second, cognitive psychic phenomena (subjective ideas and judgements), and, finally, linguistic phenomena. Moreover, it tries to bring to light the extraordinary systematic character of Bolzano’s logical thought and it does this showing that the main logical ideas developed principally in the first three parts of the Theory of Science, published in 1837, can be effortlessly formally presented within the well-known Hilbertian epsilon-calculus.Less
A starting point of Bolzano’s logical reflection was the conviction that among truths there is a connection, according to which some truths are grounds of others, and these in turn are consequences of the former, and that such a connection is objective, i.e. subsisting independently of every cognitive activity of the subject. In the attempt to account for the distinction between subjective and objective levels of knowledge, Bolzano gradually gained the conviction that the reference of the subject to the object is mediated by a realm of entities without existence that, recalling the Stoic lectà, are here called ‘lectological’. Moreover, of the two main ways through which that reference takes place—psychic activity and linguistic activity—Bolzano favoured the first and traced back to it the problems of the second; i.e. he considered those intermediate entities first as possible content of psychic phenomena and only subordinately, on the basis of a complex theory of signs, as meanings of linguistic phenomena. This book follows this schema and treats, in great detail, first, lectological entities (ideas and propositions in themselves), second, cognitive psychic phenomena (subjective ideas and judgements), and, finally, linguistic phenomena. Moreover, it tries to bring to light the extraordinary systematic character of Bolzano’s logical thought and it does this showing that the main logical ideas developed principally in the first three parts of the Theory of Science, published in 1837, can be effortlessly formally presented within the well-known Hilbertian epsilon-calculus.
Thomas Koshy
- Published in print:
- 2008
- Published Online:
- January 2009
- ISBN:
- 9780195334548
- eISBN:
- 9780199868766
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780195334548.001.0001
- Subject:
- Mathematics, Combinatorics / Graph Theory / Discrete Mathematics
Fibonacci and Lucas sequences are “two shining stars in the vast array of integer sequences,” and because of their ubiquitousness, tendency to appear in quite unexpected and unrelated places, ...
More
Fibonacci and Lucas sequences are “two shining stars in the vast array of integer sequences,” and because of their ubiquitousness, tendency to appear in quite unexpected and unrelated places, abundant applications, and intriguing properties, they have fascinated amateurs and mathematicians alike. However, Catalan numbers are even more fascinating. Like the North Star in the evening sky, they are a beautiful and bright light in the mathematical heavens. They continue to provide a fertile ground for number theorists, especially, Catalan enthusiasts and computer scientists. Since the publication of Euler's triangulation problem (1751) and Catalan's parenthesization problem (1838), over 400 articles and problems on Catalan numbers have appeared in various periodicals. As Martin Gardner noted, even though many amateurs and mathematicians may know the abc's of Catalan sequence, they may not be familiar with their myriad unexpected occurrences, delightful applications, properties, or the beautiful and surprising relationships among numerous examples. Like Fibonacci and Lucas numbers, Catalan numbers are also an excellent source of fun and excitement. They can be used to generate interesting dividends for students, such as intellectual curiosity, experimentation, pattern recognition, conjecturing, and problem-solving techniques. The central character in the nth Catalan number is the central binomial coefficient. So, Catalan numbers can be extracted from Pascal's triangle. In fact, there are a number of ways they can be read from Pascal's triangle; every one of them is described and exemplified. This brings Catalan numbers a step closer to number-theory enthusiasts, especially.Less
Fibonacci and Lucas sequences are “two shining stars in the vast array of integer sequences,” and because of their ubiquitousness, tendency to appear in quite unexpected and unrelated places, abundant applications, and intriguing properties, they have fascinated amateurs and mathematicians alike. However, Catalan numbers are even more fascinating. Like the North Star in the evening sky, they are a beautiful and bright light in the mathematical heavens. They continue to provide a fertile ground for number theorists, especially, Catalan enthusiasts and computer scientists. Since the publication of Euler's triangulation problem (1751) and Catalan's parenthesization problem (1838), over 400 articles and problems on Catalan numbers have appeared in various periodicals. As Martin Gardner noted, even though many amateurs and mathematicians may know the abc's of Catalan sequence, they may not be familiar with their myriad unexpected occurrences, delightful applications, properties, or the beautiful and surprising relationships among numerous examples. Like Fibonacci and Lucas numbers, Catalan numbers are also an excellent source of fun and excitement. They can be used to generate interesting dividends for students, such as intellectual curiosity, experimentation, pattern recognition, conjecturing, and problem-solving techniques. The central character in the nth Catalan number is the central binomial coefficient. So, Catalan numbers can be extracted from Pascal's triangle. In fact, there are a number of ways they can be read from Pascal's triangle; every one of them is described and exemplified. This brings Catalan numbers a step closer to number-theory enthusiasts, especially.