Jump to ContentJump to Main Navigation
Introduction to Modeling Convection in Planets and StarsMagnetic Field, Density Stratification, Rotation$
Users without a subscription are not able to see the full content.

Gary A. Glatzmaier

Print publication date: 2013

Print ISBN-13: 9780691141725

Published to University Press Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691141725.001.0001

Show Summary Details
Page of
date: 13 December 2017

Internal Gravity Waves

Internal Gravity Waves

Chapter:
Chapter Six Internal Gravity Waves
Source:
Introduction to Modeling Convection in Planets and Stars
Author(s):

Gary A. Glatzmaier

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691141725.003.0006

This chapter focuses on internal gravity waves in a stable thermal stratification. When the amplitude of the fluid velocity is small relative to the amplitude of the phase velocity, a linear analysis, which neglects advection, provides insight to the relation between the wavelength and frequency of internal gravity waves. Furthermore, when thermal and viscous diffusion play relatively minor roles the system can be further simplified by neglecting diffusion. The chapter first describes the linear dispersion relation before discussing the computer code modifications and simulations. In particular, it explains what modifications would be needed to convert one's thermal convection code to a code that simulates internal gravity waves, including the nonlinear and diffusive terms. Finally, it considers the computer analysis of wave energy.

Keywords:   internal gravity waves, thermal stratification, linear dispersion relation, computer code, computer simulations, thermal convection, computer analysis, wave energy, advection, diffusion

University Press Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs, and if you can't find the answer there, please contact us .