James Davidson
- Published in print:
- 1994
- Published Online:
- November 2003
- ISBN:
- 9780198774037
- eISBN:
- 9780191596117
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/0198774036.003.0021
- Subject:
- Economics and Finance, Econometrics
This chapter concerns random sequences of functions on metric spaces. The main issue is the distinction between convergence at all points of the space (pointwise) and uniform convergence, where limit ...
More
This chapter concerns random sequences of functions on metric spaces. The main issue is the distinction between convergence at all points of the space (pointwise) and uniform convergence, where limit points are also taken into account. The role of the stochastic equicontinuity property is highlighted. Generic uniform convergence conditions are given and linked to the question of uniform laws of large numbers.Less
This chapter concerns random sequences of functions on metric spaces. The main issue is the distinction between convergence at all points of the space (pointwise) and uniform convergence, where limit points are also taken into account. The role of the stochastic equicontinuity property is highlighted. Generic uniform convergence conditions are given and linked to the question of uniform laws of large numbers.
James Davidson
- Published in print:
- 1994
- Published Online:
- November 2003
- ISBN:
- 9780198774037
- eISBN:
- 9780191596117
- Item type:
- chapter
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/0198774036.003.0005
- Subject:
- Economics and Finance, Econometrics
This chapter introduces and illustrates the concept of a metric (distance measure), and the definition of a metric space. Open, closed, and compact sets are discussed in a general context, and the ...
More
This chapter introduces and illustrates the concept of a metric (distance measure), and the definition of a metric space. Open, closed, and compact sets are discussed in a general context, and the concepts of separability and completeness introduced. It goes on to look at mappings on metric spaces, and then examines the important case of function spaces, and treats the Arzelà‐Ascoli theorem.Less
This chapter introduces and illustrates the concept of a metric (distance measure), and the definition of a metric space. Open, closed, and compact sets are discussed in a general context, and the concepts of separability and completeness introduced. It goes on to look at mappings on metric spaces, and then examines the important case of function spaces, and treats the Arzelà‐Ascoli theorem.