Wim H. de Jeu
- Published in print:
- 2016
- Published Online:
- June 2016
- ISBN:
- 9780198728665
- eISBN:
- 9780191795442
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780198728665.001.0001
- Subject:
- Physics, Crystallography, Soft Matter / Biological Physics
X-ray scattering is a well-established technique in materials science. Several excellent textbooks exist in the field, typically written by physicists who use mathematics to make things clear. Often ...
More
X-ray scattering is a well-established technique in materials science. Several excellent textbooks exist in the field, typically written by physicists who use mathematics to make things clear. Often these books do not reach students and scientists in the field of soft matter (polymers, liquid crystals, colloids, and self-assembled organic systems), who usually have a chemical-oriented background with limited mathematics. Moreover, often these people like to know more about x-ray scattering as a technique to be used, but do not necessarily intend to become an expert. This volume is unique in trying to accommodate both points. The aim of the book is to explain basic principles and applications of x-ray scattering in a simple way. The intention is a paperback of limited size that people will like to have on hand rather than on a shelf. Second, it includes a large variety of examples of x-ray scattering of soft matter with, at the end of each chapter, a more elaborate case study. Third, the book contains a separate chapter on the different types of order/disorder in soft matter that play such an important role in modern self-assembling systems. Finally, the last chapter treats soft matter surfaces and thin film that are increasingly used in coatings and in many technological applications (liquid crystal displays, nanostructured block copolymer films). There is a niche for a book of this type that potentially addresses a large group of (soft matter) students and scientists.Less
X-ray scattering is a well-established technique in materials science. Several excellent textbooks exist in the field, typically written by physicists who use mathematics to make things clear. Often these books do not reach students and scientists in the field of soft matter (polymers, liquid crystals, colloids, and self-assembled organic systems), who usually have a chemical-oriented background with limited mathematics. Moreover, often these people like to know more about x-ray scattering as a technique to be used, but do not necessarily intend to become an expert. This volume is unique in trying to accommodate both points. The aim of the book is to explain basic principles and applications of x-ray scattering in a simple way. The intention is a paperback of limited size that people will like to have on hand rather than on a shelf. Second, it includes a large variety of examples of x-ray scattering of soft matter with, at the end of each chapter, a more elaborate case study. Third, the book contains a separate chapter on the different types of order/disorder in soft matter that play such an important role in modern self-assembling systems. Finally, the last chapter treats soft matter surfaces and thin film that are increasingly used in coatings and in many technological applications (liquid crystal displays, nanostructured block copolymer films). There is a niche for a book of this type that potentially addresses a large group of (soft matter) students and scientists.
Gennaro Auletta
- Published in print:
- 2011
- Published Online:
- September 2011
- ISBN:
- 9780199608485
- eISBN:
- 9780191729539
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199608485.001.0001
- Subject:
- Physics, Soft Matter / Biological Physics
The book provides a new conceptual scaffold for further research in biology and cognition by introducing the new field of Cognitive Biology. It is a systems biology approach showing that further ...
More
The book provides a new conceptual scaffold for further research in biology and cognition by introducing the new field of Cognitive Biology. It is a systems biology approach showing that further progress in this field will depend on a deep recognition of developmental processes, as well as on the consideration of the developed organism as an agent able to modify and control its surrounding environment. The role of cognition, the means through which the organism is able to cope with its environment, cannot be underestimated. In particular, it is shown that this activity is grounded on a theory of information based on Bayesian probabilities. The organism is considered as a cybernetic system able to integrate a processor as a source of variety (the genetic system), a regulator of its own homeostasis (the metabolic system), and a selecting system separating the self from the non-self (the membrane in unicellular organisms).Less
The book provides a new conceptual scaffold for further research in biology and cognition by introducing the new field of Cognitive Biology. It is a systems biology approach showing that further progress in this field will depend on a deep recognition of developmental processes, as well as on the consideration of the developed organism as an agent able to modify and control its surrounding environment. The role of cognition, the means through which the organism is able to cope with its environment, cannot be underestimated. In particular, it is shown that this activity is grounded on a theory of information based on Bayesian probabilities. The organism is considered as a cybernetic system able to integrate a processor as a source of variety (the genetic system), a regulator of its own homeostasis (the metabolic system), and a selecting system separating the self from the non-self (the membrane in unicellular organisms).
Michael P. Allen and Dominic J. Tildesley
- Published in print:
- 2017
- Published Online:
- November 2017
- ISBN:
- 9780198803195
- eISBN:
- 9780191841439
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780198803195.001.0001
- Subject:
- Physics, Theoretical, Computational, and Statistical Physics, Soft Matter / Biological Physics
This book provides a practical guide to molecular dynamics and Monte Carlo simulation techniques used in the modelling of simple and complex liquids. Computer simulation is an essential tool in ...
More
This book provides a practical guide to molecular dynamics and Monte Carlo simulation techniques used in the modelling of simple and complex liquids. Computer simulation is an essential tool in studying the chemistry and physics of condensed matter, complementing and reinforcing both experiment and theory. Simulations provide detailed information about structure and dynamics, essential to understand the many fluid systems that play a key role in our daily lives: polymers, gels, colloidal suspensions, liquid crystals, biological membranes, and glasses. The second edition of this pioneering book aims to explain how simulation programs work, how to use them, and how to interpret the results, with examples of the latest research in this rapidly evolving field. Accompanying programs in Fortran and Python provide practical, hands-on, illustrations of the ideas in the text.Less
This book provides a practical guide to molecular dynamics and Monte Carlo simulation techniques used in the modelling of simple and complex liquids. Computer simulation is an essential tool in studying the chemistry and physics of condensed matter, complementing and reinforcing both experiment and theory. Simulations provide detailed information about structure and dynamics, essential to understand the many fluid systems that play a key role in our daily lives: polymers, gels, colloidal suspensions, liquid crystals, biological membranes, and glasses. The second edition of this pioneering book aims to explain how simulation programs work, how to use them, and how to interpret the results, with examples of the latest research in this rapidly evolving field. Accompanying programs in Fortran and Python provide practical, hands-on, illustrations of the ideas in the text.
Valerica Raicu and Yuri Feldman (eds)
- Published in print:
- 2015
- Published Online:
- August 2015
- ISBN:
- 9780199686513
- eISBN:
- 9780191766398
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199686513.001.0001
- Subject:
- Physics, Soft Matter / Biological Physics
This book covers the theoretical basis, experimental methods, and practical applications of the dielectric properties of biological systems, such as water, electrolytes and polyelectrolytes, ...
More
This book covers the theoretical basis, experimental methods, and practical applications of the dielectric properties of biological systems, such as water, electrolytes and polyelectrolytes, solutions of biological macromolecules, cell suspensions, and cellular systems. The first six chapters cover theoretical, methodological, and experimental aspects of relaxation and dispersion in biological dielectrics at molecular, cellular, and cellular aggregate levels. Applications are presented in the following eight chapters, which are organized in the order of increased complexity, beginning with pure water, amino acids, and proteins, continuing with vesicles and simple cells such as erythrocytes, and then with more complex, organelle-containing cells and cellular aggregates. The first three chapters assume some knowledge of calculus and advanced mathematical methods in electricity and magnetism.Less
This book covers the theoretical basis, experimental methods, and practical applications of the dielectric properties of biological systems, such as water, electrolytes and polyelectrolytes, solutions of biological macromolecules, cell suspensions, and cellular systems. The first six chapters cover theoretical, methodological, and experimental aspects of relaxation and dispersion in biological dielectrics at molecular, cellular, and cellular aggregate levels. Applications are presented in the following eight chapters, which are organized in the order of increased complexity, beginning with pure water, amino acids, and proteins, continuing with vesicles and simple cells such as erythrocytes, and then with more complex, organelle-containing cells and cellular aggregates. The first three chapters assume some knowledge of calculus and advanced mathematical methods in electricity and magnetism.
S.N. Dorogovtsev and J.F.F. Mendes
- Published in print:
- 2003
- Published Online:
- January 2010
- ISBN:
- 9780198515906
- eISBN:
- 9780191705670
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780198515906.001.0001
- Subject:
- Physics, Soft Matter / Biological Physics
The aim of this book is to understand networks and the basic principles of their structural organization and evolution. The ideas are presented in a clear and a pedagogical way. Special attention is ...
More
The aim of this book is to understand networks and the basic principles of their structural organization and evolution. The ideas are presented in a clear and a pedagogical way. Special attention is given to real networks, both natural and artificial, including the Internet and the World Wide Web. Collected empirical data and numerous real applications of existing theories are discussed in detail, as well as the topical problems of communication and other networks.Less
The aim of this book is to understand networks and the basic principles of their structural organization and evolution. The ideas are presented in a clear and a pedagogical way. Special attention is given to real networks, both natural and artificial, including the Internet and the World Wide Web. Collected empirical data and numerous real applications of existing theories are discussed in detail, as well as the topical problems of communication and other networks.
J. Klafter and I. M. Sokolov
- Published in print:
- 2011
- Published Online:
- December 2013
- ISBN:
- 9780199234868
- eISBN:
- 9780191775024
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199234868.001.0001
- Subject:
- Physics, Soft Matter / Biological Physics
The name “random walk” for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of “Nature”. The same ...
More
The name “random walk” for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of “Nature”. The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays theory of random walks was proved useful in physics and chemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcellular structures) and in many other disciplines. The random walk approach serves not only as a model of simple diffusion but of many complex sub‐ and superdiffusive transport processes as well. This book discusses main variants of the random walks and gives the most important mathematical tools for their theoretical description.Less
The name “random walk” for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of “Nature”. The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays theory of random walks was proved useful in physics and chemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcellular structures) and in many other disciplines. The random walk approach serves not only as a model of simple diffusion but of many complex sub‐ and superdiffusive transport processes as well. This book discusses main variants of the random walks and gives the most important mathematical tools for their theoretical description.
Anatoly I. Ruban and Jitesh S. B. Gajjar
- Published in print:
- 2014
- Published Online:
- August 2014
- ISBN:
- 9780199681730
- eISBN:
- 9780191761607
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199681730.001.0001
- Subject:
- Physics, Soft Matter / Biological Physics
This book, the first of a four-part series on fluid dynamics, consists of four chapters on classical theory suitable for an introductory undergraduate course. Chapter 1 discusses the continuum ...
More
This book, the first of a four-part series on fluid dynamics, consists of four chapters on classical theory suitable for an introductory undergraduate course. Chapter 1 discusses the continuum hypothesis and introduces macroscopic functions. The forces acting inside a fluid are analysed, and the Navier–Stokes equations are derived for incompressible and compressible fluids. Chapter 2 studies the properties of flows represented by exact solutions of the Navier–Stokes equations, including Couette flow between two parallel plates, Hagen–Poiseuille flow through a pipe, and Kármán flow above an infinite rotating disk. Chapter 3 deals with inviscid incompressible flows, starting with a discussion of integrals of the Euler equations, the Bernoulli integral, and the Cauchy–Lagrange integral. Kelvin’s Circulation Theorem is proved, and used to identify physical situations where a flow can be treated as potential. Attention is principally directed at two-dimensional potential flows. These can be described in terms of a complex potential, allowing the full power of the theory of functions of a complex variable to be used. The method of conformal mapping is introduced and used to study various flows, including flow past Joukovskii aerofoils. Chapter 4 introduces the elements of gasdynamics, describing compressible flows of a perfect gas, including supersonic flows. Particular attention is paid to the theory of characteristics, which is used, for example, to analyse Prandtl–Meyer flow over a body surface bend and a corner. Shock waves are discussed and the chapter concludes with analysis of unsteady flows, including the theory of blast waves.Less
This book, the first of a four-part series on fluid dynamics, consists of four chapters on classical theory suitable for an introductory undergraduate course. Chapter 1 discusses the continuum hypothesis and introduces macroscopic functions. The forces acting inside a fluid are analysed, and the Navier–Stokes equations are derived for incompressible and compressible fluids. Chapter 2 studies the properties of flows represented by exact solutions of the Navier–Stokes equations, including Couette flow between two parallel plates, Hagen–Poiseuille flow through a pipe, and Kármán flow above an infinite rotating disk. Chapter 3 deals with inviscid incompressible flows, starting with a discussion of integrals of the Euler equations, the Bernoulli integral, and the Cauchy–Lagrange integral. Kelvin’s Circulation Theorem is proved, and used to identify physical situations where a flow can be treated as potential. Attention is principally directed at two-dimensional potential flows. These can be described in terms of a complex potential, allowing the full power of the theory of functions of a complex variable to be used. The method of conformal mapping is introduced and used to study various flows, including flow past Joukovskii aerofoils. Chapter 4 introduces the elements of gasdynamics, describing compressible flows of a perfect gas, including supersonic flows. Particular attention is paid to the theory of characteristics, which is used, for example, to analyse Prandtl–Meyer flow over a body surface bend and a corner. Shock waves are discussed and the chapter concludes with analysis of unsteady flows, including the theory of blast waves.
Anatoly I. Ruban
- Published in print:
- 2015
- Published Online:
- October 2015
- ISBN:
- 9780199681747
- eISBN:
- 9780191761614
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199681747.001.0001
- Subject:
- Physics, Soft Matter / Biological Physics
The book is the second part in a series which describes fluid dynamics. The book introduces asymptotic methods, and their applications to fluid dynamics. It first discusses the mathematical aspects ...
More
The book is the second part in a series which describes fluid dynamics. The book introduces asymptotic methods, and their applications to fluid dynamics. It first discusses the mathematical aspects of the asymptotic theory. This is followed by an exposition of the results of inviscid flow theory, starting with subsonic flows past thin aerofoils. This includes unsteady flow theory and the analysis of separated flows. The book then considers supersonic flow past a thin aerofoil, where the linear approximation leads to the Ackeret formula for the pressure. It also discusses the second-order Buzemann approximation, and the flow behaviour at large distances from the aerofoil. Then the properties of transonic and hypersonic flows are discussed in detail. The book concludes with a discussion of viscous low-Reynolds-number flows. Two classical problems of the low-Reynolds-number flow theory are considered: the flow past a sphere and the flow past a circular cylinder. In both cases the flow analysis leads to a difficulty, known as Stoke’s paradox. The book shows that this paradox can be resolved using the formalism of matched asymptotic expansions.Less
The book is the second part in a series which describes fluid dynamics. The book introduces asymptotic methods, and their applications to fluid dynamics. It first discusses the mathematical aspects of the asymptotic theory. This is followed by an exposition of the results of inviscid flow theory, starting with subsonic flows past thin aerofoils. This includes unsteady flow theory and the analysis of separated flows. The book then considers supersonic flow past a thin aerofoil, where the linear approximation leads to the Ackeret formula for the pressure. It also discusses the second-order Buzemann approximation, and the flow behaviour at large distances from the aerofoil. Then the properties of transonic and hypersonic flows are discussed in detail. The book concludes with a discussion of viscous low-Reynolds-number flows. Two classical problems of the low-Reynolds-number flow theory are considered: the flow past a sphere and the flow past a circular cylinder. In both cases the flow analysis leads to a difficulty, known as Stoke’s paradox. The book shows that this paradox can be resolved using the formalism of matched asymptotic expansions.
Anatoly I. Ruban
- Published in print:
- 2017
- Published Online:
- January 2018
- ISBN:
- 9780199681754
- eISBN:
- 9780191761621
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780199681754.001.0001
- Subject:
- Physics, Soft Matter / Biological Physics, Condensed Matter Physics / Materials
This is Part 3 of a book series on fluid dynamics. This is designed to give a comprehensive and coherent description of fluid dynamics, starting with chapters on classical theory suitable for an ...
More
This is Part 3 of a book series on fluid dynamics. This is designed to give a comprehensive and coherent description of fluid dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture courses, and then progressing through more advanced material up to the level of modern research in the field. This book is devoted to high-Reynolds number flows. It begins by analysing the flows that can be described in the framework of Prandtl’s 1904 classical boundary-layer theory. These analyses include the Blasius boundary layer on a flat plate, the Falkner-Skan solutions for the boundary layer on a wedge surface, and other applications of Prandtl’s theory. It then discusses separated flows, and considers first the so-called ‘self-induced separation’ in supersonic flow that was studied in 1969 by Stewartson and Williams, as well as by Neiland, and led to the ‘triple-deck model’. It also presents Sychev’s 1972 theory of the boundary-layer separation in an incompressible fluid flow past a circular cylinder. It discusses the triple-deck flow near the trailing edge of a flat plate first investigated in 1969 by Stewartson and in 1970 by Messiter. It then considers the incipience of the separation at corner points of the body surface in subsonic and supersonic flows. It concludes by covering the Marginal Separation theory, which represents a special version of the triple-deck theory, and describes the formation and bursting of short separation bubbles at the leading edge of a thin aerofoil.Less
This is Part 3 of a book series on fluid dynamics. This is designed to give a comprehensive and coherent description of fluid dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture courses, and then progressing through more advanced material up to the level of modern research in the field. This book is devoted to high-Reynolds number flows. It begins by analysing the flows that can be described in the framework of Prandtl’s 1904 classical boundary-layer theory. These analyses include the Blasius boundary layer on a flat plate, the Falkner-Skan solutions for the boundary layer on a wedge surface, and other applications of Prandtl’s theory. It then discusses separated flows, and considers first the so-called ‘self-induced separation’ in supersonic flow that was studied in 1969 by Stewartson and Williams, as well as by Neiland, and led to the ‘triple-deck model’. It also presents Sychev’s 1972 theory of the boundary-layer separation in an incompressible fluid flow past a circular cylinder. It discusses the triple-deck flow near the trailing edge of a flat plate first investigated in 1969 by Stewartson and in 1970 by Messiter. It then considers the incipience of the separation at corner points of the body surface in subsonic and supersonic flows. It concludes by covering the Marginal Separation theory, which represents a special version of the triple-deck theory, and describes the formation and bursting of short separation bubbles at the leading edge of a thin aerofoil.
Isabelle Cantat, Sylvie Cohen-Addad, Florence Elias, François Graner, Reinhard Höhler, Olivier Pitois, Florence Rouyer, and Arnaud Saint-Jalmes
Simon Cox (ed.)
- Published in print:
- 2013
- Published Online:
- September 2013
- ISBN:
- 9780199662890
- eISBN:
- 9780191763038
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199662890.001.0001
- Subject:
- Physics, Soft Matter / Biological Physics
Aqueous foams are studied both as materials with many applications, and as model systems for fields ranging from metallurgy to mathematics to biology. They are complex fluids with unique and unusual ...
More
Aqueous foams are studied both as materials with many applications, and as model systems for fields ranging from metallurgy to mathematics to biology. They are complex fluids with unique and unusual properties, exemplified as much by their multiscale structure as by the dynamical processes through which they evolve and even their dual liquid-like and solid-like behaviour. In this book, readers can easily find clear, up-to-date answers to their questions regarding the physical and physico-chemical properties of aqueous foams, explained using current knowledge of their structure, their stability, and their rheology. Newcomers to the field will find descriptions of numerous applications of foams in daily life and in industrial processes, the definition of basic concepts, hundreds of figures, and simple experiments to perform at home. Those who want to proceed further will find updated references, exercises with solutions, appendices with experimental and numerical techniques, and boxed text with the further mathematical detail.Less
Aqueous foams are studied both as materials with many applications, and as model systems for fields ranging from metallurgy to mathematics to biology. They are complex fluids with unique and unusual properties, exemplified as much by their multiscale structure as by the dynamical processes through which they evolve and even their dual liquid-like and solid-like behaviour. In this book, readers can easily find clear, up-to-date answers to their questions regarding the physical and physico-chemical properties of aqueous foams, explained using current knowledge of their structure, their stability, and their rheology. Newcomers to the field will find descriptions of numerous applications of foams in daily life and in industrial processes, the definition of basic concepts, hundreds of figures, and simple experiments to perform at home. Those who want to proceed further will find updated references, exercises with solutions, appendices with experimental and numerical techniques, and boxed text with the further mathematical detail.